第四章:NumPy基础Day6-7

2024-05-15 07:08
文章标签 基础 第四章 numpy day6

本文主要是介绍第四章:NumPy基础Day6-7,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明:本文章为Python数据处理学习日志,记录内容为实现书本内容时遇到的错误以及一些与书本不一致的地方,一些简单操作则不再赘述。日志主要内容来自书本《利用Python进行数据分析》,Wes McKinney著,机械工业出版社。

1、ndarray

ndarray介绍

ndarray的说明:

Class docstring:

ndarray(shape, dtype=float, buffer=None, offset=0,strides=None, order=None)

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory, whether it is an integer, a floating point number, or something else, etc.)

Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The parameters given here refer to a low-level method (ndarray(...)) for instantiating an array.

参数介绍:

Parameters

shape : tuple of ints
Shape of created array.

dtype : data-type, optional
Any object that can be interpreted as a numpy data type.

buffer : object exposing buffer interface, optional
Used to fill the array with data.

offset : int, optional
Offset of array data in buffer.

strides : tuple of ints, optional
Strides of data in memory.

order : {‘C’, ‘F’}, optional
Row-major (C-style) or column-major (Fortran-style) order.

属性:

Attributes

T : ndarray
Transpose of the array.

data : buffer
The array’s elements, in memory.

dtype : dtype object
Describes the format of the elements in the array.

flags : dict
Dictionary containing information related to memory use, e.g.,’C_CONTIGUOUS’, ‘OWNDATA’, ‘WRITEABLE’, etc.

flat : numpy.flatiter object
Flattened version of the array as an iterator. The iterator allows assignments, e.g., x.flat = 3 (See ndarray.flat for
assignment examples; TODO).

imag : ndarray
Imaginary part of the array.

real : ndarray
Real part of the array.

size : int
Number of elements in the array.

itemsize : int
The memory use of each array element in bytes.

nbytes : int
The total number of bytes required to store the array data, i.e., itemsize * size.

ndim : int
The array’s number of dimensions.

shape : tuple of ints
Shape of the array.

strides : tuple of ints
The step-size required to move from one element to the next in memory. For example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This implies that to move from element to element in memory requires jumps of 2 bytes.To move from row-to-row, one needs to jump 8 bytes at a time(2 * 4).

ctypes : ctypes object
Class containing properties of the array needed for interaction with ctypes.

base : ndarray
If the array is a view into another array, that array is its base(unless that array is also a view). The base array is where
the array data is actually stored.

书本注

P87 astype函数
转化为int则会报错:

num_strings = np.array(['1.25','-9.6','42'],dtype = np.string_)num_strings.dtype
Out[40]: dtype('S4')num_strings.astype(float64)
Out[41]: array([  1.25,  -9.6 ,  42.  ])num_strings.astype(int)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-42-6d0676c88a7e> in <module>()
----> 1 num_strings.astype(int)ValueError: invalid literal for int() with base 10: '1.25' 

P89视图与copy
用“=”定义新的数组,改变其一,另一个都会随之变化:

arr = np.arange(10)arr
Out[78]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])arr1 = arrarr1
Out[80]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])arr1[3:5]=233arr1
Out[82]: array([  0,   1,   2, 233, 233,   5,   6,   7,   8,   9])arr
Out[83]: array([  0,   1,   2, 233, 233,   5,   6,   7,   8,   9])arr[3:5]=0arr
Out[98]: array([0, 1, 2, 0, 0, 5, 6, 7, 8, 9])arr1
Out[99]: array([0, 1, 2, 0, 0, 5, 6, 7, 8, 9])

若不想这样,可以用copy()函数得到副本而非视图:

arr = np.arange(10)arr1 = arr.copy()arr
Out[103]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])arr1
Out[104]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])arr1[5:8] = 233arr1
Out[106]: array([  0,   1,   2,   3,   4, 233, 233, 233,   8,   9])arr
Out[107]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])arr[1:3] = 666arr
Out[109]: array([  0, 666, 666,   3,   4,   5,   6,   7,   8,   9])arr1
Out[110]: array([  0,   1,   2,   3,   4, 233, 233, 233,   8,   9])

P90三维array

arr3d = np.array([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]])

存储方式如下图:
这里写图片描述

参考上图,则容易理解以下操作结果:

arr3d[0]
Out[15]: 
array([[1, 2, 3],[4, 5, 6]])arr3d[0,0]
Out[16]: array([1, 2, 3])arr3d[:,:1]
Out[17]: 
array([[[1, 2, 3]],[[7, 8, 9]]])arr3d[:,:1,1:]
Out[18]: 
array([[[2, 3]],[[8, 9]]])

P93二维array的切片
尽管选取的元素是一样的,但格式上是有差别的:

arr2d[2,:].shape
Out[20]: (3L,)arr2d[2:,:].shape
Out[21]: (1L, 3L)arr2d[2,:]
Out[22]: array([7, 8, 9])arr2d[2:,:]
Out[23]: array([[7, 8, 9]]) #这里多一层[]

P93布尔型索引
注意维度:

data[names == 'Bob'] #选中为True的行
Out[40]: 
array([[ 0.50050011,  0.29686535, -0.28906449,  2.01808417],
       [ 1.11494101,  0.16982801,  0.71012665,  0.27181318]])data[names == 'Bob',3] #此时的3为列
Out[41]: array([ 2.01808417,  0.27181318])data[names == 'Bob'][1] #此时1为行
Out[43]: array([ 1.11494101,  0.16982801,  0.71012665,  0.27181318])data[names == 'Bob'][1,2] #此时1为行,2为列
Out[44]: 0.71012664552279547

P94选择除“Bob”以外的值
负号(-)用于逻辑计算是deprecated,建议使用“~”:

data[-(names == 'Bob')]
-c:1: DeprecationWarning: numpy boolean negative, the `-` operator, is deprecated, use the `~` operator or the logical_not function instead.
Out[45]: 
array([[ 0.14050569,  0.3441191 , -1.33003662,  0.42766074],[-0.45652879, -1.51870623, -2.45291715,  0.86532186],[ 0.775377  , -0.73127956,  0.02678242, -0.73168782],[ 0.80537817, -1.1611737 ,  1.31483485,  1.79852968],[-0.07039251,  0.1692129 , -1.7043453 ,  0.03626713]])data[~(names == 'Bob')]
Out[46]: 
array([[ 0.14050569,  0.3441191 , -1.33003662,  0.42766074],[-0.45652879, -1.51870623, -2.45291715,  0.86532186],[ 0.775377  , -0.73127956,  0.02678242, -0.73168782],[ 0.80537817, -1.1611737 ,  1.31483485,  1.79852968],[-0.07039251,  0.1692129 , -1.7043453 ,  0.03626713]])

P95花式索引
索引并不是按值来索引,而是按行。即[4,3,0,6]为行,而并非值,书上例子易误解:

for i in range(8):arr[i]=i*iarr
Out[67]: 
array([[  0.,   0.,   0.,   0.],[  1.,   1.,   1.,   1.],[  4.,   4.,   4.,   4.],[  9.,   9.,   9.,   9.],[ 16.,  16.,  16.,  16.],[ 25.,  25.,  25.,  25.],[ 36.,  36.,  36.,  36.],[ 49.,  49.,  49.,  49.]])arr[[4,3,2,6]]
Out[68]: 
array([[ 16.,  16.,  16.,  16.],[  9.,   9.,   9.,   9.],[  4.,   4.,   4.,   4.],[ 36.,  36.,  36.,  36.]])arr[[-3,-1,-7]]
Out[69]: 
array([[ 25.,  25.,  25.,  25.],[ 49.,  49.,  49.,  49.],[  1.,   1.,   1.,   1.]])

2、通用函数

实际上是对数组的每一个元素进行运算,用通用函数会方便许多,完全不用写任何循环!!!

3、利用数组进行数据处理

示例实现结果图:
这里写图片描述

函数说明

mean()函数(其他如sum均类似,不赘述)

Signature:
mean(a, axis=None, dtype=None, out=None, keepdims=False)
Docstring:
Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis.float64 intermediate and return values are used for integer inputs.

Parameters:
a : array_like
Array containing numbers whose mean is desired. If a is not an array, a conversion is attempted.
axis : None or int or tuple of ints, optional
Axis or axes along which the means are computed. The default is to compute the mean of the flattened array. If this is a tuple of ints, a mean is performed over multiple axes,instead of a single axis or all the axes as before.
dtype : data-type, optional
Type to use in computing the mean. For integer inputs, the default is float64; for floating point inputs, it is the same as the input dtype.
out : ndarray, optional
Alternate output array in which to place the result. The default is None; if provided, it must have the same shape as the expected output, but the type will be cast if necessary.See doc.ufuncs for details.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr.

Returns
m : ndarray, see dtype parameter above
If out=None, returns a new array containing the mean values, otherwise a reference to the output array is returned.

书本注

P103逻辑运算
分别实现三种方法,第三个表达式似乎有点问题。第三种方法同样因为版本问题,有些符号需要更改,如求反改“-”为“~”,亦或改“-”为“^”(这里实际上并不是求亦或,而是表达式出了问题):

cond1 = array([True,True,False,False])cond2 = array([True,False,True,False])result1=[]for i in range(4):if cond1[i] and cond2[i]:result1.append(0)elif cond1[i]:result1.append(1)elif cond2[i]:result1.append(2)else:result1.append(3)result1
Out[179]: [0, 1, 2, 3]result2 = np.where(cond1&cond2,0,np.where(cond1,1,np.where(cond2,2,3)))result2
Out[181]: array([0, 1, 2, 3])result3 = 1*(cond1-cond2)+2*(cond2& -cond1)+3* -(cond1|cond2)
-c:1: DeprecationWarning: numpy boolean subtract, the `-` operator, is deprecated, use the bitwise_xor, the `^` operator, or the logical_xor function instead.
-c:1: DeprecationWarning: numpy boolean negative, the `-` operator, is deprecated, use the `~` operator or the logical_not function instead.result3
Out[184]: array([0, 1, 3, 3])result3 = 1*(cond1^cond2)+2*(cond2&~cond1)+3*~(cond1|cond2)result3
Out[186]: array([0, 1, 3, 3])

该逻辑的卡诺图为下图:
这里写图片描述

表达式为:
F(AB)=0×AB+1×A¯B+2×AB¯+3×A¯B¯

应将表达式修改为:

result3 = 1*(cond1&~cond2)+2*(cond2&~cond1)+3*~(cond1|cond2)result3
Out[188]: array([0, 1, 2, 3])

P104数学和统计方法
在此说明一些mean()的参数axis(其他方法的参数axis均与mean()函数相同):

arr = random.randn(5,4) #Canopy中默认了很多东西,此处可以不加np.arr
Out[214]: 
array([[-1.35496721, -0.15978328,  0.38585305, -0.31769088],[ 1.02980411, -0.66722211,  0.7295801 , -1.08059653],[-0.78498058, -1.32036524,  0.96689313, -0.72398153],[ 0.1016877 ,  1.3240266 ,  1.70886154, -0.60597185],[-1.79229484, -2.20550415,  0.69782981,  0.68054199]])arr.mean(1) #此处的参数1即为axis的值,延axis1计算,故计算结果为每一行的平均值
Out[215]: array([-0.36164708,  0.0028914 , -0.46560855,  0.632151  , -0.6548568 ])arr.mean(0) #此处的参数0也为axis的值,延axis0计算,故计算结果为每一列的平均值
Out[216]: array([-0.56015016, -0.60576964,  0.89780353, -0.40953976])arr.mean(2) #因为arr为二维数组,axis并没有2,故报错
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-217-9e6caf702904> in <module>()
----> 1 arr.mean(2) #因为arr为二维数组,axis并没有2,故报错E:\Enthought\hzk\User\lib\site-packages\numpy\core\_methods.pyc in _mean(a, axis, dtype, out, keepdims)54     arr = asanyarray(a)55 
---> 56     rcount = _count_reduce_items(arr, axis)57     # Make this warning show up first58     if rcount == 0:E:\Enthought\hzk\User\lib\site-packages\numpy\core\_methods.pyc in _count_reduce_items(arr, axis)48     items = 149     for ax in axis:
---> 50         items *= arr.shape[ax]51     return items52 IndexError: tuple index out of range arr3d = random.randn(3,3,3)arr3d
Out[219]: 
array([[[-0.44556533,  1.38462328, -0.41991462],[-0.94348762,  0.24127859,  0.10032657],[-1.00207669,  0.09779813,  1.39707048]],[[ 1.82511376,  0.21457405,  0.2793703 ],[-2.52457174, -0.48253527,  0.11162123],[ 1.32029231,  1.25795631, -0.86304957]],[[ 1.2496241 ,  0.60886197, -0.79459398],[-3.11245287,  1.19690542,  0.59970726],[-0.75850899,  1.11220732,  0.7452851 ]]])arr3d.mean(2) #改为三维数组则不会报错
Out[220]: 
array([[ 0.17304778, -0.20062749,  0.16426397],[ 0.77301937, -0.96516193,  0.57173302],[ 0.3546307 , -0.43861339,  0.36632781]])

注意:axis参数0,1,指的是延axis0或axis1计算,这一点可以从cumsum()和cumprod()函数中体现出了:

arr = array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])arr
Out[231]: 
array([[ 1,  2,  3],[ 4,  5,  6],[ 7,  8,  9],[10, 11, 12]])arr.cumsum(0)
Out[232]: 
array([[ 1,  2,  3],[ 5,  7,  9],[12, 15, 18],[22, 26, 30]])arr.cumsum(1)
Out[233]: 
array([[ 1,  3,  6],[ 4,  9, 15],[ 7, 15, 24],[10, 21, 33]])arr.cumprod(0)
Out[234]: 
array([[   1,    2,    3],[   4,   10,   18],[  28,   80,  162],[ 280,  880, 1944]])arr.cumprod(1)
Out[235]: 
array([[   1,    2,    6],[   4,   20,  120],[   7,   56,  504],[  10,  110, 1320]])

二维数组的axis示意图为:
这里写图片描述

5、用于数组的文件输入输出

存的文件名最好不要带空格“ ”,尽量用下划线“_”代替,不然按Tab键无法自动加载。

6、线性代数

书本注

P110矩阵运算
可能是精度问题,计算 XX1 并不得单位矩阵 E <script type="math/tex" id="MathJax-Element-3">E</script>:

x = array(randn(5,5),dtype='f')x
Out[328]: 
array([[-0.22578056,  0.11948908, -0.34033489, -1.17195463,  0.03571514],[-0.32171333,  0.30542919, -2.02457905, -0.58019698, -0.97900975],[-0.66901571, -1.31925774, -1.30758452,  1.68790388,  0.91629416],[ 1.85947955,  0.29689333,  0.06040272, -0.38136303,  1.94833517],[ 1.61013746,  0.54303652, -1.0496527 ,  1.74626613,  0.73138028]], dtype=float32)inv(x)
Out[329]: 
array([[-3.83887243,  1.60917497, -0.23554267,  1.54410875, -1.47681177],[ 5.01534271, -2.0442934 , -0.20324162, -1.94631255,  2.45808005],[-0.25406945, -0.28958428, -0.14813125, -0.02293177, -0.12855303],[ 0.56339014, -0.47421208,  0.07606155, -0.51252431,  0.6077475 ],[ 3.0176971 , -1.30811489,  0.27525163, -0.7634539 ,  1.15783525]], dtype=float32)dot(x,inv(x))
Out[330]: 
array([[  1.00000000e+00,  -1.49011612e-08,   4.65661287e-09,-3.72529030e-09,  -8.19563866e-08],[  2.38418579e-07,   9.99999881e-01,   0.00000000e+00,-5.96046448e-08,   0.00000000e+00],[  4.76837158e-07,   1.19209290e-07,   1.00000000e+00,5.96046448e-08,   0.00000000e+00],[  0.00000000e+00,   2.38418579e-07,  -5.96046448e-08,1.00000012e+00,  -2.38418579e-07],[ -2.38418579e-07,   0.00000000e+00,   0.00000000e+00,0.00000000e+00,   1.00000012e+00]], dtype=float32)

7、范例:随机漫步

书本注

P112
绘图直接用代码:

plot(walk)
Out[351]: [<matplotlib.lines.Line2D at 0x157ae7f0>]

结果:
这里写图片描述

这篇关于第四章:NumPy基础Day6-7的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/991141

相关文章

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]