使用 Python 和机器学习预测股票涨跌幅

2024-05-15 07:04

本文主要是介绍使用 Python 和机器学习预测股票涨跌幅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用 Tushare API 获取深圳股市历史数据

引言

这篇文章将会演示如何使用 Tushare Pro API 获取深圳股市的历史交易数据,并将数据保存到CSV文件中。Tushare 是一款提供实时和历史金融市场的数据服务,支持多种语言,具有丰富的数据源和强大的功能。

安装 Tushare

在开始之前,你需要先安装 Tushare 库。可以通过 pip 安装:

pip install tushare

初始化 Tushare API

使用 Tushare Pro API 需要一个 token 。可以在 Tushare 官方网站注册并获取 token。一旦你获得了 token,可以通过以下方式初始化 Tushare API:

import tushare as tsts.set_token('your_token')

获取历史数据

一旦你已经初始化了 Tushare API,就可以开始请求数据了。在此示例中,我们将获取深交所的“000004”股票的历史数据。我们可以通过以下代码实现:​​​​​​​

pro = ts.pro_api('your_token')df = pro.daily(ts_code='000004.SZ', start_date='20200701', end_date='20231108')

此段代码将从2020年7月1日到2023年11月10日获取“000004”股票的日线数据。

保存数据到CSV文件

最后,我们可以使用 pandas 的 to_csv 函数来将所获取的数据保存到CSV文件中:

df.to_csv("000004_2023.csv", index=False)

在保存时,我们不希望保留索引(index=False),因为 Tushare 提供的数据已经自带了一个 date 字段作为索引。所以如果保留索引的话,可能会造成混淆。总结一下,这篇教程介绍了如何使用 Tushare API 来获取深交所历史数据并将其保存到CSV文件中。Tushare 是一款功能强大的金融数据分析工具,可以帮助您更好地理解金融市场趋势。

使用 Python 和机器学习预测股票涨跌幅

引言

这篇文章将演示如何使用Python和机器学习库来构建一个简单的股票涨跌幅预测模型。我们将使用过去的股票涨跌幅数据来预测明天的股票涨跌幅走势。在开始之前,请确保你已安装所需的所有库,其中包括 Pandas、Numpy、Scikit-learn 和 XGBoost。

安装 Tushare

在开始之前,你需要先安装 Tushare 库。可以通过 pip 安装:​​​​​​​

pip install numpypip install pandaspip install xgboostpip install scikit-learn

数据导入

首先,我们需要读取股票涨跌幅数据,并将其转换成 Pandas DataFrame。使用 Pandas 的 read_csv() 函数即可完成这项工作:

import pandas as pdimport numpy as npfrom sklearn.model_selection import train_test_splitfrom xgboost import XGBClassifierfrom sklearn.metrics import accuracy_scoredata = pd.read_csv("000004_2023.csv")

特征和标签的选择

接下来,我们需要确定输入特性和输出特性。在这个例子中,我们将选取开盘价、最高价、最低价、昨天的收盘价、今天的价格变动、成交量和成交额作为输入特征。此外,我们将根据今天的涨跌幅与昨天涨跌幅的差值是否为正,将明天的涨跌幅变动标记为涨(1)或跌(0)作为输出特性。通过以下代码实现:​​​​​​​

features = ["open", "high", "low", "pre_close", "change", "vol", "amount"]               data["pct_chg"] = data["close"].pct_change()               data["pct_chg"] = np.where(data["pct_chg"] > 0, 1, 0)

划分训练集和测试集

接下来,我们需要将数据集分割为两个部分:训练集和测试集。通常,我们将 80% 的数据用于训练模型,剩下20%的数据用于评估模型。我们可以使用 Scikit-learn 的 train_test_split() 函数来实现这一目的:​​​​​​​

X = data[features]               y = data["pct_chg"]                              X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=48)

建立和训练模型

现在我们可以使用 XGBoost 模型来构建我们的预测器。首先,我们创建一个 XGBClassifier 类的实例,并使用 fit() 方法对其进行训练:​​​​​​​

model = XGBClassifier()               model.fit(X_train, y_train)

测试模型

接下来,我们可以使用我们的模型对测试集进行预测:

y_pred = model.predict(X_test)

评估模型

现在我们可以计算预测结果的准确性:

​​​​​​​

accuracy = accuracy_score(y_test, y_pred)               print(f"模型准确率: {accuracy}")

预测未来价格

接下来我们使用模型预测未来两天的涨跌幅。首先,我们需要获得未来两天的时间戳:

​​​​​​​

last_date = pd.to_datetime(data.index[-1])               future_dates = pd.date_range(last_date + pd.DateOffset(days=1), periods=2)

然后,我们将昨天的涨跌幅信息填充到未来两天的时间戳下:

future_features = pd.DataFrame(index=future_dates)               for column in features:                   future_features[column] = [data[column].iloc[-1]] * 2

最后,我们用模型对未来的两天的涨跌幅进行预测:

future_predictions = model.predict(future_features)               print(f"未来两天的预测值: {future_predictions}")

综上所述,我们已经完成了使用 Python 和机器学习技术构建一个简单股票涨跌幅预测模型的过程。需要注意的是,虽然该模型能够在一定程度上预测未来的涨跌幅走势,但是还需要考虑其他因素,如市场环境和经济政策等。    

请注意:

以上代码仅使用简单的机器学习模型尝试预测股票涨跌幅变动,而在实际中,股票涨跌幅受到许多复杂因素的影响,比如政治因素、宏观经济情况、公司经营状况等。在实际应用中应慎重使用,并配合其他技术分析手段进行辅助判断。另外,股市有风险,投资需谨慎。

这篇关于使用 Python 和机器学习预测股票涨跌幅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991133

相关文章

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Qt 中集成mqtt协议的使用方法

《Qt中集成mqtt协议的使用方法》文章介绍了如何在工程中引入qmqtt库,并通过声明一个单例类来暴露订阅到的主题数据,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一,引入qmqtt 库二,使用一,引入qmqtt 库我是将整个头文件/源文件都添加到了工程中进行编译,这样 跨平台

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2