C++编译和内存细节,可能存在的隐患,面试题03

2024-05-15 04:52

本文主要是介绍C++编译和内存细节,可能存在的隐患,面试题03,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 11. C++编译过程
    • 11.1. #include<file.h> vs #include"file.h"
    • 11.2. 声明 vs 定义
    • 11.3. extern “C” 的作用
    • 11.4. typedef vs #define
  • 12. const vs #define
    • 12.1. 全局const vs 局部const
  • 13. C++内存分区
    • 13.1. 什么是内存泄漏?如何检测内存泄漏?
    • 13.2. 大项目如何调试死锁?
    • 13.3. volatile关键字作用
    • 13.4. 栈溢出的原因及解决
  • 14. C++变量作用域
    • 14.1. 常量 vs 全局变量 vs 静态变量
  • 15. C++类型转换
  • 16. 函数指针
  • 17. 悬空指针 vs 野指针
  • 18. 为什么使用空指针,建议使用nullptr而不是NULL?

11. C++编译过程

  • 预处理:处理以#开头的预处理指令,比如#include和#define等。
  • 编译:将预处理后的源文件转汇编代码。
  • 汇编:将汇编代码转机器指令,生成目标文件。
  • 链接:将目标文件与相应的库文件进行链接,生成可执行文件。

11.1. #include<file.h> vs #include"file.h"

  • 相同:都是预处理指令,用于包含头文件。
  • 区别
    • 使用<> 包含标准库的头文件,从标准库路径寻找。
    • 使用 “” 包含用于自定义的头文件,从当前工作路径寻找。

11.2. 声明 vs 定义

  • 声明是告诉编译器函数或类的存在,但不提供具体实现;或者变量存在,但不分配内存空间。如变量声明 extern int x; 只是告诉编译器变量的类型和名称。
  • 定义是对函数或类的具体实现;对变量分配内存空间并赋初值。

11.3. extern “C” 的作用

  • 由于C++支持函数重载,就是函数在编译期间,链接符号的时候,会在符号后追加一些特殊标识,而C不支持函数重载。使用extern “C” 可以告诉编译器将函数声明按照C语言的链接规范处理,这样可以使C++函数在C环境调用时正确链接到对应的函数,即是为了解决函数符号名的问题。

11.4. typedef vs #define

  • 相同:都可以创建类型别名,代码如下。
typedef (int*) p1;
#define p2 int*
  • 区别

    • 处理阶段:
      • #define在预处理阶段进行替换,如 p2 a,b; 等同于 int* a, b;
      • typedef 在编译阶段进行替换,如 p1 a,b; 等同于 int* a;int* b;
    • 类型安全:
      • #define只是简单的字符串替换,不进行类型检查,存在隐患。
      • typedef 它是给已有类型取别名,在编译时进行类型检查。
    • 作用域:
      • #define是在整个文件作用域。
      • typedef是在当前文件作用域。

12. const vs #define

  • 相同:都可以定义常量,代码如下。
#define MAX_SIZE 100
const int value = 50;
  • 区别

    • 处理阶段:
      • #define在预处理阶段进行替换。
      • const在编译阶段确定其值。
    • 类型安全:
      • #define只是简单的字符串替换,不进行类型检查,存在隐患。
      • const有数据类型,在编译时进行类型检查。
    • 存储方式:
      • #define有多少次替换,在内存中有多少个拷贝。
      • const定义的常量会分配内存空间,且在程序运行过程中内存只有一个拷贝。
    • 调试信息:
      • #define只是替换,不会产生调试信息。
      • const被视为变量,可以产生调试信息。如下图。
        在这里插入图片描述
    • 另外,#define可以定义简单的函数,而const不可以定义函数。

12.1. 全局const vs 局部const

  • 全局const存储在常量区,无法通过指针修改。
  • 局部const存储在栈区,是一个“假”常量,始终是一个变量,只是编译时进行语法检查,发现代码有对const修饰的变量修改时则报错。本质上时可以修改的,利用指针获取变量地址,强制将const属性修饰去掉,就可以修改对应内容,【注意】 会造成未定义行为。代码如下。
void print(const int& a)
{cout << a << endl;
}int main() {const int num = 50; //局部constint* p = const_cast<int*>(&num); //使用const_cast<>强制将const属性去掉*p = 20; //通过指针修改内容print(num);return 0;
}
  • 程序执行结果,如下图。

在这里插入图片描述

  • 分析:当print()函数的参数是引用或指针时,会传入修改后的const内容,而不会因为编译器的优化,即常量折叠,在编译时就替换。这是不当的操作。

13. C++内存分区

  • 堆:用于动态分配内存,使用new或malloc手动分配,使用delete或free手动释放,注意内存泄漏的问题。
  • 栈:存储局部变量和函数调用的控制信息,如返回地址、参数、局部变量等,由系统自动分配和释放。
  • 全局区:存放全局变量、静态变量,程序结束后由系统释放。
  • 常量区:存放字符串常量等,程序结束后由系统释放。
  • 代码区:存放程序的二进制代码。

13.1. 什么是内存泄漏?如何检测内存泄漏?

  • 动态分配内存,使用后未释放,导致一直占据该内存,即内存泄漏。
  • 在main()的return 0前,使用CRT库检查内存泄漏,然后观察输出的调试窗口。如果有动态分配的内存没有释放,就会输出相应的内存泄漏信息。但如果没有释放的内存是对象内存,这时候还需要在return 0处设置断点并进行调试,通过反汇编分析,借助内存窗口和寄存器窗口,观察析构函数是否正确释放对象内存,来作进一步判断。

13.2. 大项目如何调试死锁?

  • 获取程序dump文件,使用WinDbg工具打开并分析线程,检查线程是否挂起,然后根据线程的堆栈信息找到每个线程的入口点,进行动态分析以确定死锁原因。

13.3. volatile关键字作用

  • voletile修饰的变量,会从内存中重新装载内容,而不是直接从寄存器中拷贝内容。为了解决变量在共享环境下容易出现读取错误的问题。

13.4. 栈溢出的原因及解决

  • 原因
    • 函数调用层次过深,每调用一次,函数的参数、局部变量等信息就压一次栈。
    • 函数的局部变量体积过大。
  • 解决
    • 使用堆内存,如把数组改成数组指针,然后动态分配内存。
    • 可以把局部变量改成静态局部变量,相当于作用域在函数内的全局变量。

14. C++变量作用域

  • 全局变量属于进程作用域,在整个进程中都可以访问到。
  • 静态变量属于文件作用域,在当前源码文件内可以访问到。
  • 局部变量属于函数作用域,在函数内可以访问到。
  • 在’{ }'语句块内定义的变量属于块作用域,只能在该块内访问。

14.1. 常量 vs 全局变量 vs 静态变量

  • 相同:程序执行前就存在了,即在编译期就已经确定了地址。通过立即数访问。
  • 区别:作用域和内存分配
    • 常量
      • 全局常量,存放在常量区(只读数据段),整个文件内都可以访问到。
      • 局部常量,存放在栈区,在函数内可以访问到。
    • 全局变量,存放在全局区(可读写数据段),整个文件内都可以访问到。
    • 静态变量
      • 全局静态变量,存放在全局区(可读写数据段),当前文件内可以访问到。
      • 局部静态变量,存放在全局区(可读写数据段),在函数内可以访问到。

15. C++类型转换

  • 隐式类型转换由编译器自动完成
    • char,short——>int——>unsigned——>long——>double
    • float ——>double
  • 显式类型转换手工强制完成
    • 使用()。
    • 标准转型操作符,能够避免许多任意转型引起的潜在错误。
  • 四种标准转型操作符,示例如下。
  1. const_cast:去除或添加const、volatile属性。
int num = 42; 
const int* p = const_cast<const int*>(&num); //添加const修饰
  1. static_cast:用于常规类型转换,如数值之间的转换、指针或引用之间的转换。
double d = 3.14;
int i = static_cast<int>(d); //将double转int
  1. dynamic_cast:用于多态对象(即存在虚函数的对象)间类型转换,将基类指针或引用转换为子类指针或引用,从而访问子类特有的成员函数。【注意】 引用转型失败会抛异常”bad_cast“;指针转型失败会返回一个空指针,如果漏写检查代码(assert/if语句)会导致安全隐患。
class Draw
{
public:virtual ~Draw(){}virtual void drawLen() = 0;  
};class Circle : public Draw
{
private:double radius; public:Circle(double r) : radius(r){}~Circle() { printf("%s%f\n", "Delete circle with radius ",radius); }void getDescription() { printf("%s%f\n", "Circle with radius ",radius);}void drawLen() { printf("%s%f\n", "Circle with len ", 2 * 3.14 * radius); }
};int main() 
{Draw* d = new Circle(5);  //基类指针指向子类对象d->drawLen();Circle* c = dynamic_cast<Circle*>(d); //将基类指针转子类指针if(c!=nullptr) c->getDescription(); //访问子类特有的成员函数delete d; return 0;
}
  1. reinterpret_cast:对目标的内存二进制位进行低层次的重新解释。如将指针转换为整数、不同类型的指针之间的转换。【注意】 它会忽略指针类型和数据之间的任何差异,存在安全隐患,因此需要谨慎使用。
int num = 20;
double* d = reinterpret_cast<double*>(&num); //将int*转double*

16. 函数指针

  • 函数调用是直接调用的;而函数指针是先取出指针的值(函数地址)再调用,是间接调用的。
  • 应用场景
    • 实现回调函数,比如在图形用户界面中,可以使用函数指针指定按钮点击事件的响应函数。
    • 把函数指针当形参传递给某些具有通用功能的模块,并封装成接口来提高代码的灵活性,方便后期维护。
    • 可以在排序和搜索算法中,使用函数指针提供自定义的比较逻辑,比如升序、降序,如下。
#include<iostream>
#include<vector>
using namespace std;//定义比较函数指针类型
using CompareFunction = bool(*)(int, int);// 冒泡排序,传入比较函数指针
void bubbleSort(vector<int>& arr, CompareFunction compare) {int n = arr.size();for (int i = 0; i < n - 1; ++i) for (int j = 0; j < n - i - 1; ++j) if (compare(arr[j], arr[j + 1])) swap(arr[j], arr[j + 1]);
}//升序
bool ascending(int a, int b) {return a > b;}// 降序
bool descending(int a, int b) { return a < b;}int main() 
{vector<int> numbers = { 5, 2, 8, 1, 4 };// 使用升序cout << "Ascending order:" << std::endl;bubbleSort(numbers, ascending);for (auto && u : numbers) { cout << u << " ";}// 使用降序cout << endl << "Descending order:" <<endl;bubbleSort(numbers, descending);for (auto&& u : numbers) { cout << u << " "; }return 0;
}
  • 程序执行结果,如下图。
    在这里插入图片描述

17. 悬空指针 vs 野指针

  • 悬空指针:当指向的内存被释放后,指针没有被及时置空。【注意】 访问悬空指针会导致未定义行为,如下。
int* ptr = new int(42);
delete ptr;*ptr = 20; //错误,访问悬空指针会导致未定义行为。
  • 野指针:指针没有被初始化。【注意】 野指针的值是不确定的,可能指向任意的内存地址,访问野指针会导致未定义行为,如下。
 int* ptr;*ptr = 20; //错误,访问野指针会导致未定义行为。

18. 为什么使用空指针,建议使用nullptr而不是NULL?

  • nullptr是空指针常量,可以隐式转换成任意指针类型,但不会自动转换为整数类型;而NULL是宏,整数类型,【注意】 可能会导致类型安全问题,如下。
void f(int a) {cout << "parameter int" << endl;}void f(void* a) { cout << "parameter void*" << endl;}int main() {f(NULL); //调用f(int)f(nullptr); //调用f(void*)return 0;
}

这篇关于C++编译和内存细节,可能存在的隐患,面试题03的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/990859

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二