如何管理Spark Streaming消费Kafka的偏移量(二)

2024-05-15 03:08

本文主要是介绍如何管理Spark Streaming消费Kafka的偏移量(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上篇文章,讨论了在spark streaming中管理消费kafka的偏移量的方式,本篇就接着聊聊上次说升级失败的案例。

事情发生一个月前,由于当时我们想提高spark streaming程序的并行处理性能,于是需要增加kafka分区个数,,这里需要说下,在新版本spark streaming和kafka的集成中,按照官网的建议 spark streaming的executors的数量要和kafka的partition的个数保持相等,这样每一个executor处理一个kafka partition的数据,效率是最高的。如果executors的数量大于kafka的分区个数,其实多余的executors相当于是不会处理任何数据,这部分的进程其实是白白浪费性能。

如果executor的个数小于kafka partition的个数,那么其实有一些executors进程是需要处理多个partition分区的数据的,所以官网建议spark executors的进程数和kafka partition的个数要保持一致。

那么问题来了,如果想要提高spark streaming的并行处理性能,只能增加kafka的分区了,给kafka增加分区比较容易,直接执行一个命令即可,不过这里需要注意,kafka的分区只能增加不能减少,所以添加分区要考虑到底多少个才合适。

接下来我们便增加了kafka分区的数量,同时修改了spark streaming的executors的个数和kafka的分区个数一一对应,然后就启动了流程序,结果出现了比较诡异的问题,表现如下:

造几条测试数据打入kafka中,发现程序总是只能处理其中的一部分数据,而每次总有一些数据丢失。按理说代码没有任何改动,只是增加kafka的分区和spark streaming的executors的个数,应该不会出现问题才对,于是又重新测了原来的旧分区和程序,发现没有问题,经过对比发现问题只会出现在kafka新增分区后,然后出现这种丢数据的情况。然后和运维同学一起看了新增的kafka的分区的磁盘目录是否有数据落入,经查询发现新的分区确实已经有数据进入了,这就很奇怪了丢的数据到底是怎么丢的?

最后我又检查了我们自己保存的kafka的offset,发现里面的偏移量竟然没有新增kafka的分区的偏移量,至此,终于找到问题所在,也就是说,如果没有新增分区的偏移量,那么程序运行时是不会处理新增分区的数据,而我们新增的分区确确实实有数据落入了,这就是为啥前面说的诡异的丢失数据的原因,其实是因为新增kafka的分区的数据程序并没有处理过而这个原因正是我们的自己保存offset中没有记录新增分区的偏移量。

问题找到了,那么如何修复线上丢失的数据呢?

当时想了一个比较笨的方法,因为我们的kafka线上默认是保留7天的数据,旧分区的数据已经处理过,就是新增的分区数据没有处理,所以我们删除了已经处理过的旧的分区的数据,然后在业务流量底峰时期,重新启了流程序,让其从最早的数据开始消费处理,这样以来因为旧的分区被删除,只有新分区有数据,所以相当于是把丢失的那部分数据给修复了。修复完成后,又把程序停止,然后配置从最新的偏移量开始处理,这样偏移量里面就能识别到新增的分区,然后就继续正常处理即可。

注意这里面的删除kafka旧分区的数据,是一个比较危险的操作,它要求kafka的节点需要全部重启才能生效,所以除非特殊情况,不要使用这么危险的方式。

后来,仔细分析了我们使用的一个开源程序管理offset的源码,发现这个程序有一点bug,没有考虑到kafka新增分区的情况,也就是说如果你的kafka分区增加了,你的程序在重启后是识别不到新增的分区的,所以如果新增的分区还有数据进入,那么你的程序一定会丢数据,因为扩展kafka分区这个操作,并不常见,所以这个bug比较难易触发。

知道原因后,解决起来比较容易了,就是每次启动流程序前,对比一下当前我们自己保存的kafka的分区的个数和从zookeeper里面的存的topic的分区个数是否一致,如果不一致,就把新增的分区给添加到我们自己保存的信息中,并发偏移量初始化成0,这样以来在程序启动后,就会自动识别新增分区的数据。

所以,回过头来看上面的那个问题,最简单优雅的解决方法就是,直接手动修改我们自己的保存的kafka的分区偏移量信息,把新增的分区给加入进去,然后重启流程序即可。

这个案例也就是我上篇文章所说的第三个场景的case,如果是自己手动管理kafka的offset一定要注意兼容新增分区后的这种情况,否则程序可能会出现丢失数据的问题。

这篇关于如何管理Spark Streaming消费Kafka的偏移量(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/990635

相关文章

Kafka拦截器的神奇操作方法

《Kafka拦截器的神奇操作方法》Kafka拦截器是一种强大的机制,用于在消息发送和接收过程中插入自定义逻辑,它们可以用于消息定制、日志记录、监控、业务逻辑集成、性能统计和异常处理等,本文介绍Kafk... 目录前言拦截器的基本概念Kafka 拦截器的定义和基本原理:拦截器是 Kafka 消息传递的不可或缺

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

如何在一台服务器上使用docker运行kafka集群

《如何在一台服务器上使用docker运行kafka集群》文章详细介绍了如何在一台服务器上使用Docker运行Kafka集群,包括拉取镜像、创建网络、启动Kafka容器、检查运行状态、编写启动和关闭脚本... 目录1.拉取镜像2.创建集群之间通信的网络3.将zookeeper加入到网络中4.启动kafka集群

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、

IDEA中的Kafka管理神器详解

《IDEA中的Kafka管理神器详解》这款基于IDEA插件实现的Kafka管理工具,能够在本地IDE环境中直接运行,简化了设置流程,为开发者提供了更加紧密集成、高效且直观的Kafka操作体验... 目录免安装:IDEA中的Kafka管理神器!简介安装必要的插件创建 Kafka 连接第一步:创建连接第二步:选

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

搭建Kafka+zookeeper集群调度

前言 硬件环境 172.18.0.5        kafkazk1        Kafka+zookeeper                Kafka Broker集群 172.18.0.6        kafkazk2        Kafka+zookeeper                Kafka Broker集群 172.18.0.7        kafkazk3

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

安全管理体系化的智慧油站开源了。

AI视频监控平台简介 AI视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上进行简单的操作,就可以实现全视频的接入及布控。摄像头管理模块用于多种终端设备、智能设备的接入及管理。平台支持包括摄像头等终端感知设备接入,为整个平台提