摊还分析

2024-05-14 22:44
文章标签 分析 摊还

本文主要是介绍摊还分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、摊还分析

        概念:是求数据结构中一个操作序列执行所有操作的平均时间,与平均复杂度不同,它不涉及输入概率,能够保证在最坏情况下操作的平均性能

        适用场景:用含 n 个操作的序列(o1,o2,,,,,on) 维护某数据结构

        操作代价:单次操作代价可能会很大,在最坏情况下代价为 max(oi)

二、摊还分析的三种方法

        以栈的操作为例,说明摊还分析的三种方法

        栈操作

        基本原则:先进后出

        基本操作: 

               ① POP(S):将栈 S 的栈顶对象弹出,并返回该对象 代价为O(1)

               ② PUSH(S,x):将对象 x 压入栈 S 中    代价为O(1)

                (一个含有n个PUSH和POP操作的序列的总代价为n,n个操作的实际运行时间为O(n))

               ③ MULTIPOP(S,k):弹出栈 S 的栈顶 k 个对象   代价为 O( min(s,k) )

        1.聚合分析

         如果对所有的 n ,一个 n 个操作的序列最坏情况下花费的总时间为T(n),那么在最坏情况下,每个操作的平均代价,或摊还代价为 T(n) / n 。此外,摊还代价是适用于每个操作的,即使序列中有多种类型的操作也是如此。

         假设栈的大小最大为 n ,则执行MULTIPOP操作的最坏情况是 O(n),因此,一个 n 个操作的序列的最坏情况为 O(n^{2}) ,操作序列包含了 n 个MULTIPOP操作(n*n)。

        然而,考虑整个序列的 n 个操作,PUSH 和 POP 的代价为1,最坏的情况下,一定是前 n-1次操作都是 PUSH,最后一次 MULTIPOP(S,n-1),此时的代价为 2*(n-1)=2*n-2,时间复杂度为 O(n),平均每个操作的摊还代价为 O(1)

        2.核算法

        对于不同操作赋予不同费用,某些操作的费用可能多于或少于其实际代价。 赋予一个操作的费用,称为它的摊还代价。 当一个操作的摊还代价超出其实际代价时,差额部分存入数据结构中的特定对象,存入的差额称为信用。 对于后续操作中摊还代价小于实际代价的情况,信用可以用于支付差额。 需要确保操作序列的总摊还代价是序列总真实代价的上界。

        同样,对于栈操作,赋予其费用(如图)

        PUSH操作的摊还代价为 2 ,相当于进栈时的代价1 + 压入对象出栈的代价1,此时POP和MULTIPOP操作的摊还代价为 0,对于一个n个操作序列,最坏的情况就是 n 个PUSH操作,此时代价为 2n,时间复杂度为 O(n)。

 

         3.势能法

            与核算法相似,势能法摊还分析并不将预付代价表示为特定对象的信用,而是表示成“势能”,将势能释放即可用来支付未来操作的代价

        摊余成本 = 真实开销 + 新势能 – 旧势能

        假设 n 个操作将数据结构从 D0 修改为 D1 直至…Dn.

        令 Φ(D) 代表数据结构 D 的势.

        令 ci 代表第 i 个操作的真实代价.  令 ĉi 代表第 i 个操作的摊还代价.

                            

        对于势能的理解,若f(D_{i})-f(D_{i-1})>0,则操作 i 在数据结构中存入能量以便以后使用

                                     若f(D_{i})-f(D_{i-1})< 0,则数据结构为操作 i 提供能量执行

          根据累加有:

                                

                                            

                        总摊还代价是总实际代价的一个上界

             栈操作:

             将栈的势函数定义为其中的对象数量,对于其实空栈D0,有 Φ(D0)=0

             因此第 i 步操作得到的栈具有非负的势 Φ(Di) >= 0 = Φ(D0),则用Φ定义的n个操作的总摊还代价是实际代价的上界。

              假定PUSH ,POP操作的代价为1,MULTIPOP操作的代价为 k,且规定压入栈一个对象势能+1,弹栈一个对象势能-1。

              如果第 i 个操作是PUSH操作,且栈中有 s 个对象

               势差为:     Φ(Di)-Φ(Di-1) = (s + 1) – s = 1

              摊还代价是:     ĉi=ci+ Φ(Di) - Φ(Di-1) = 1+1 = 2  (核算法)

三、动态表中插入操作代价的摊还分析 

        当动态表中空间不足时,申请更多内存增大动态表中的空间,并重新插入旧元素。

        插入元素操作的思路:当空间不足时,将动态表中的内存*2,并且将所有旧元素插入至新的动态表中。插入开销为:

         1.聚合分析:

                根据上述 Ci 的值,将所有代价相加求和:

            总代价为T(n)= \sum c_{i}\leq n+\sum_{j=1}^{lgn}2^{j}\leq 3n,为 O(n),摊还代价为 O(1)

        2.核算法

                第 i 次插入支付费用为 3 (包含此次插入的开销1+重新插入元素1+重新插入旧元素1)

   则对于一个含有n个操作的序列总代价为 3n,时间复杂度为 O (n),每个操作的摊还代价为O(1)

        3.势能法

     定义势函数为: Φ(T)=2 * T.num – T.size(T.num为动态表中元素个数,T.size为动态表容量)

        ①一次扩张后: T.size=2*(T.num-1),Φ(T)=0 (扩张后 T.num-1 为 2 的幂)

        ②扩张前: T.num=T.size Φ(T)=T.num (扩张前 T.num 为 2 的幂)

        未触发动态表扩张

        

        触发动态表扩张

 

         4.关于动态表的插入与删除的思考

          对于动态表中的元素,可能增加,也可能减少,总是维护大表浪费空间,同时支持元素插入和删除操作。

        动态表空间想法:

        ① 当表溢出时,将表的空间增大一倍

        ② 当表不足 1/2 满时,将表的空间缩减一半。

出现性能不佳:在表满的时候,持续执行插入 删除 插入 删除 插入等操作,此时会不断的扩张和缩减容量。 -------> 将②中 1/2 改为 1/4,可以适当减少此情况的发生

        势能法分析:

插入元素时: 

           情况一: αi-1 >= 1/2  上述势能法已有

           情况二: αi-1 < 1/2, 且αi < 1/2

           情况三: αi-1 < 1/2, 且αi >= 1/2

删除元素时:

         情况一:αi-1 >= 1/2  上述势能法已有

         情况二:αi-1 < 1/2, 且未收缩

        情况三:  αi-1 < 1/2, 且收缩 (  size[i]=2*(num[i]+1)    size[i]*2=size[i-1]  ) 容量仍减半(非1/4) 

 势能变化:

 

每个操作的摊还代价的上界都是一个常数。因此,在一个动态表上执行任意n个操作的实际运行时间是O(n) 

这篇关于摊还分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/990066

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

PostgreSQL核心功能特性与使用领域及场景分析

PostgreSQL有什么优点? 开源和免费 PostgreSQL是一个开源的数据库管理系统,可以免费使用和修改。这降低了企业的成本,并为开发者提供了一个活跃的社区和丰富的资源。 高度兼容 PostgreSQL支持多种操作系统(如Linux、Windows、macOS等)和编程语言(如C、C++、Java、Python、Ruby等),并提供了多种接口(如JDBC、ODBC、ADO.NET等

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据