【深度学习中的“冻结”含义】

2024-05-14 22:20
文章标签 学习 深度 含义 冻结

本文主要是介绍【深度学习中的“冻结”含义】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、冻结操作
  • 二、实际使用
  • 三 、案例
    • 训练代码...
  • 总结


前言

在深度学习领域,“冻结”的含义通常指的是在训练过程中保持网络模型中的某一层或多层的权重参数不变。

这样做的目的可能是为了保留预训练模型在这些层上学到的特征,或者是因为这些层的参数对于当前任务来说已经足够好,不需要再进行训练。


提示:以下是本篇文章正文内容,下面案例可供参考

一、冻结操作

对于如何执行“冻结”操作,通常可以通过设置模型层(或参数)的trainable属性为False来实现。

以下是一个简单的例子,展示了如何在PyTorch中冻结模型的一部分:

import torch  
import torch.nn as nn  # 假设我们有一个预训练的模型  
model = nn.Sequential(  nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),  nn.ReLU(),  nn.MaxPool2d(kernel_size=2, stride=2),  # ... 其他层 ...  
)  # 我们要冻结前两层(即卷积层和ReLU层)  
for param in model[:2].parameters():  param.requires_grad = False  # 现在,只有第三层及之后的层是可训练的  
# 我们可以继续训练模型,但前两层的权重将保持不变

在这个例子中,我们创建了一个简单的卷积神经网络模型,并决定冻结前两层。

我们通过遍历这两层的参数,并将它们的requires_grad属性设置为False来实现这一点。

这意味着在反向传播过程中,这些参数的梯度将不会被计算,因此它们的权重也不会被更新。

二、实际使用

# 假设loggerp是一个已经定义好的日志记录器  
if isinstance(cfg.MODEL.NOT_TRAIN_IN_MULTI_TASK, list) and cfg.MODEL.NOT_TRAIN_IN_MULTI_TASK != []:  loggerp.info("use freeze for " + str(cfg.MODEL.NOT_TRAIN_IN_MULTI_TASK))  for k, v in model.named_parameters():  if any(x in k for x in cfg.MODEL.NOT_TRAIN_IN_MULTI_TASK):  # 使用any而不是ang,并且确保k中包含了列表中的某个元素  logger.info(f'freezing{k}')v.requires_grad = False  # 冻结这个参数,设置requires_grad为False

这段代码的作用是根据配置中指定的任务列表,在模型中冻结不需要在多任务训练中更新的参数。让我们逐行解释:

if isinstance(cfg.MODEL.NOT_TRAIN_IN_MULTI_TASK, list) and cfg.MODEL.NOT_TRAIN_IN_MULTI_TASK != []:

这是一个条件语句,用于检查配置中的 NOT_TRAIN_IN_MULTI_TASK 是否是一个非空的列表。如果是列表且不为空,则进入下一步操作。

loggerp.info("use freeze for " + str(cfg.MODEL.NOT_TRAIN_IN_MULTI_TASK))

这行代码记录了要冻结的参数列表,以便后续查看。日志消息中包含了要冻结的参数列表。

for k, v in model.named_parameters():

这是一个遍历模型参数的循环。model.named_parameters() 返回模型中所有参数的名称及其对应的参数张量。

if any(x in k for x in cfg.MODEL.NOT_TRAIN_IN_MULTI_TASK):

这是一个条件语句,用于检查参数名称是否包含在配置指定的任务列表中的任何一个。

这里使用了 Python 的 any() 函数,它接受一个可迭代对象,并返回 True 如果可迭代对象中的任何元素为 True,否则返回 False。

v.requires_grad = False

如果参数名称包含在指定的任务列表中,则将该参数的 requires_grad 属性设置为 False,即冻结该参数,不再更新它的梯度值。

通过这段代码,你可以根据需要灵活地指定哪些参数需要在多任务训练中保持固定,以便更好地适应不同的训练需求。

三 、案例

在 PyTorch 中,要冻结模型的某些层的权重,可以通过设置这些层的 requires_grad 属性为 False 来实现。这样做可以确保在训练过程中这些层的权重不会被更新。以下是一般的操作步骤:

获取模型的参数:首先,需要获取模型的参数,可以使用 model.parameters() 或 model.named_parameters() 方法来获取模型的参数。

冻结指定层的权重:对于要冻结的层,将其参数的 requires_grad 属性设置为 False。

设置优化器:如果使用了优化器,确保只为要更新的参数创建优化器。这意味着只为 requires_grad=True 的参数创建优化器。

以下是一个示例代码:

import torch
import torchvision.models as models##  加载预训练的模型
model = models.resnet18(pretrained=True)## 冻结模型的前几层
for name, param in model.named_parameters():if 'layer1' in name or 'layer2' in name:param.requires_grad = False## 只为要更新的参数创建优化器
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)# filter(lambda p: p.requires_grad, model.parameters()):
# 使用了 Python 中的 filter 函数,结合了一个 lambda 函数,以过滤出那些 requires_grad 属性为 True 的模型参数。# 
# model.parameters() 返回模型的所有参数,而 filter 函数将返回一个迭代器,其中仅包含 requires_grad 属性为 True 的参数。

训练代码…

在上面的示例中,我们冻结了 ResNet 模型的 layer1 和 layer2,然后创建了一个 SGD 优化器,只为 requires_grad=True 的参数创建优化器。这样做后,optimizer 将只更新被冻结层之外的层的权重。


总结

在深度学习中,"冻结"通常指的是在训练过程中保持模型的某些部分或参数不可更新。

当我们冻结某些参数时,意味着它们在反向传播过程中不会被更新,即它们的梯度值将保持不变。

冻结通常用于以下情况:

迁移学习:

当我们将一个在一个任务上训练好的模型应用到另一个相关任务时,有时我们会冻结模型的一部分或全部参数,以保留之前任务学到的特征表示。

这样做有助于防止在新任务上过度调整,并且可以加快训练速度。

多任务学习:

在同时训练多个任务的情况下,有时我们希望某些任务共享模型的某些部分,而其他任务则专注于学习不同的特征。

通过冻结某些参数,我们可以确保这些共享的部分在不同任务之间保持一致,同时允许任务特定的部分进行自适应学习。

模型调试:

在模型训练初期,有时我们希望先固定模型的某些部分,只训练其他部分,以便更好地理解模型的行为并排除一些问题。

冻结的含义是,在训练过程中,被冻结的参数的值将保持不变,不会根据损失函数的梯度进行更新。

这样,即使在训练过程中,这些参数的值也不会发生变化,它们在模型中的作用相当于固定不变。

这篇关于【深度学习中的“冻结”含义】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/990017

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]