盒子(方框)滤波(BoxFilter)原理及C++及Matlab实现

2024-05-14 21:18

本文主要是介绍盒子(方框)滤波(BoxFilter)原理及C++及Matlab实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

盒子滤波是一种非常有用的线性滤波,也叫方框滤波,最简单的均值滤波就是盒子滤波归一化的情况。

应用:可以说,一切需要求某个邻域内像素之和的场合,都有盒子滤波的用武之地,比如:均值滤波、引导滤波、计算Haar特征等等。

优势:就一个字:快!它可以使复杂度为O(MN)的求和,求方差等运算降低到O(1)或近似于O(1)的复杂度,也就是说与邻域尺寸无关了,有点类似积分图吧,但是貌似比积分图更快(与它的实现方式有关)。

opencv函数:

void boxFilter( InputArray src, OutputArray dst, int ddepth,Size ksize, Point anchor = Point(-1,-1),bool normalize = true,int borderType = BORDER_DEFAULT );

原理

在原理上,和均值滤波一样,用一个内核和图像进行卷积:

                                                          \texttt{K} =  \alpha \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1 \end{bmatrix}

其中:

                                            \alpha = \fork{\frac{1}{\texttt{ksize.width*ksize.height}}}{when \texttt{normalize=true}}{1}{otherwise}

可见,归一化了就是均值滤波;不归一化则可以计算每个像素邻域上的各种积分特性,方差、协方差,平方和等等。

 

实现

c++实现

Note:

1、我这里用的积分图思想实现的,虽然效果一样,但速度慢一些,所以算不上真正意义上的盒子滤波实现形式,若要看真正的实现方式,可以参考:https://www.cnblogs.com/lwl2015/p/4460711.html。

2、这个c++程序只是实验,仅仅为了学习盒子滤波的原理。若真正的去应用,例如用到引导滤波中,这个程序还不够稳健,或许会出问题,因为没有考虑多个通道以及多种数据类型的情况。建议可以进一步看看OpenCV关于boxfitler的源码。

#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>/
//求积分图-优化方法
//由上方negral(i-1,j)加上当前行的和即可
//对于W*H图像:2*(W-1)*(H-1)次加减法
//比常规方法快1.5倍左右
/
void Fast_integral(cv::Mat& src, cv::Mat& dst){int nr = src.rows;int nc = src.cols;int sum_r = 0;dst = cv::Mat::zeros(nr + 1, nc + 1, CV_64F);for (int i = 1; i < dst.rows; ++i){for (int j = 1, sum_r = 0; j < dst.cols; ++j){//行累加,因为积分图相当于在原图上方加一行,左边加一列,所以积分图的(1,1)对应原图(0,0),(i,j)对应(i-1,j-1)sum_r = src.at<uchar>(i - 1, j - 1) + sum_r; //行累加dst.at<double>(i, j) = dst.at<double>(i - 1, j) + sum_r;}}
}//
//盒子滤波-均值滤波是其特殊情况
/
void BoxFilter(cv::Mat& src, cv::Mat& dst, cv::Size wsize, bool normalize){//图像边界扩充if (wsize.height % 2 == 0 || wsize.width % 2 == 0){fprintf(stderr, "Please enter odd size!");exit(-1);}int hh = (wsize.height - 1) / 2;int hw = (wsize.width - 1) / 2;cv::Mat Newsrc;cv::copyMakeBorder(src, Newsrc, hh, hh, hw, hw, cv::BORDER_REFLECT);//以边缘为轴,对称src.copyTo(dst);//计算积分图cv::Mat inte;Fast_integral(Newsrc, inte);//BoxFilterdouble mean = 0;for (int i = hh + 1; i < src.rows + hh + 1; ++i){  //积分图图像比原图(边界扩充后的)多一行和一列 for (int j = hw + 1; j < src.cols + hw + 1; ++j){double top_left = inte.at<double>(i - hh - 1, j - hw - 1);double top_right = inte.at<double>(i - hh - 1, j + hw);double buttom_left = inte.at<double>(i + hh, j - hw - 1);double buttom_right = inte.at<double>(i + hh, j + hw);if (normalize == true)mean = (buttom_right - top_right - buttom_left + top_left) / wsize.area();elsemean = buttom_right - top_right - buttom_left + top_left;//一定要进行判断和数据类型转换if (mean < 0)mean = 0;else if (mean>255)mean = 255;dst.at<uchar>(i - hh - 1, j - hw - 1) = static_cast<uchar>(mean);}}
}int main(){cv::Mat src = cv::imread("I:\\Learning-and-Practice\\2019Change\\Image process algorithm\\Img\\woman2.jpeg");if (src.empty()){return -1;}//自编BoxFilter测试cv::Mat dst1;double t2 = (double)cv::getTickCount(); //测时间if (src.channels() > 1){std::vector<cv::Mat> channel;cv::split(src, channel);BoxFilter(channel[0], channel[0], cv::Size(7, 7), true);//盒子滤波BoxFilter(channel[1], channel[1], cv::Size(7, 7), true);//盒子滤波BoxFilter(channel[2], channel[2], cv::Size(7, 7), true);//盒子滤波cv::merge(channel,dst1);}elseBoxFilter(src, dst1, cv::Size(7, 7), true);//盒子滤波t2 = (double)cv::getTickCount() - t2;double time2 = (t2 *1000.) / ((double)cv::getTickFrequency());std::cout << "FASTmy_process=" << time2 << " ms. " << std::endl << std::endl;//opencv自带BoxFilter测试cv::Mat dst2;double t1 = (double)cv::getTickCount(); //测时间cv::boxFilter(src, dst2, -1, cv::Size(7, 7), cv::Point(-1, -1), true, cv::BORDER_CONSTANT);//盒子滤波t1 = (double)cv::getTickCount() - t1;double time1 = (t1 *1000.) / ((double)cv::getTickFrequency());std::cout << "Opencvbox_process=" << time1 << " ms. " << std::endl << std::endl;cv::namedWindow("src");cv::imshow("src", src);cv::namedWindow("ourdst",CV_WINDOW_NORMAL);cv::imshow("ourdst", dst1);cv::namedWindow("opencvdst", CV_WINDOW_NORMAL);cv::imshow("opencvdst", dst2);cv::waitKey(0);}

Matlab实现

Note: 来自何恺明大神主页引导滤波代码 http://kaiminghe.com/

function imDst = boxfilter(imSrc, r)%   BOXFILTER   O(1) time box filtering using cumulative sum
%
%   - Definition imDst(x, y)=sum(sum(imSrc(x-r:x+r,y-r:y+r)));
%   - Running time independent of r; 
%   - Equivalent to the function: colfilt(imSrc, [2*r+1, 2*r+1], 'sliding', @sum);
%   - But much faster.[hei, wid] = size(imSrc);
imDst = zeros(size(imSrc));%cumulative sum over Y axis
imCum = cumsum(imSrc, 1);
%difference over Y axis
imDst(1:r+1, :) = imCum(1+r:2*r+1, :);
imDst(r+2:hei-r, :) = imCum(2*r+2:hei, :) - imCum(1:hei-2*r-1, :);
imDst(hei-r+1:hei, :) = repmat(imCum(hei, :), [r, 1]) - imCum(hei-2*r:hei-r-1, :);%cumulative sum over X axis
imCum = cumsum(imDst, 2);
%difference over Y axis
imDst(:, 1:r+1) = imCum(:, 1+r:2*r+1);
imDst(:, r+2:wid-r) = imCum(:, 2*r+2:wid) - imCum(:, 1:wid-2*r-1);
imDst(:, wid-r+1:wid) = repmat(imCum(:, wid), [1, r]) - imCum(:, wid-2*r:wid-r-1);
end

效果

核尺寸:7*7

                      不归一化

原图

                           原图

                          归一化

 

原理分析:

BoxFilter包滤波器的Matlab代码实现分析(基础)

这篇关于盒子(方框)滤波(BoxFilter)原理及C++及Matlab实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989872

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主