开源模型应用落地-CodeQwen模型小试-集成langchain(四)

2024-05-14 11:52

本文主要是介绍开源模型应用落地-CodeQwen模型小试-集成langchain(四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

    通过学习代码专家模型,开发人员可以获得高效、准确和个性化的代码支持。这不仅可以提高工作效率,还可以在不同的技术环境中简化软件开发工作流程。代码专家模型的引入将为开发人员带来更多的机会去关注创造性的编程任务,从而推动软件开发的创新和进步。

    通过使用langchain,用户可以直接提出问题或发送指令,而无需担心具体的步骤或流程。langchain会自动将任务分解为多个子任务,并将它们传递给适合的语言模型进行处理。


二、术语

2.1.CodeQwen1.5

    基于 Qwen 语言模型初始化,拥有 7B 参数的模型,其拥有 GQA 架构,经过了 ~3T tokens 代码相关的数据进行预训练,共计支持 92 种编程语言、且最长支持 64K 的上下文输入。效果方面,CodeQwen1.5 展现出了非凡的代码生成、长序列建模、代码修改、SQL 能力等,该模型可以大大提高开发人员的工作效率,并在不同的技术环境中简化软件开发工作流程。

CodeQwen 是基础的 Coder

    代码生成是大语言模型的关键能力之一,期待模型将自然语言指令转换为具有精确的、可执行的代码。仅拥有 70 亿参数的 CodeQwen1.5 在基础代码生成能力上已经超过了更尺寸的模型,进一步缩小了开源 CodeLLM 和 GPT-4 之间编码能力的差距。

CodeQwen 是长序列 Coder

    长序列能力对于代码模型来说至关重要,是理解仓库级别代码、成为 Code Agent 的核心能力。而当前的代码模型对于长度的支持仍然非常有限,阻碍了其实际应用的潜力。CodeQwen1.5 希望进一步推进开源代码模型在长序列建模上的进展,我们收集并构造了仓库级别的长序列代码数据进行预训练,通过精细的数据配比和组织方式,使其最终可以最长支持 64K 的输入长度。

CodeQwen 是优秀的代码修改者

    一个好的代码助手不仅可以根据指令生成代码,还能够针对已有代码或者新的需求进行修改或错误修复。

CodeQwen 是出色的 SQL 专家

    CodeQwen1.5 可以作为一个智能的 SQL 专家,弥合了非编程专业人士与高效数据交互之间的差距。它通过自然语言使无编程专业知识的用户能够查询数据库,从而缓解了与SQL相关的陡峭学习曲线。

2.2.CodeQwen1.5-7B-Chat

CodeQwen1.5 is the Code-Specific version of Qwen1.5. It is a transformer-based decoder-only language model pretrained on a large amount of data of codes.

  • Strong code generation capabilities and competitve performance across a series of benchmarks;
  • Supporting long context understanding and generation with the context length of 64K tokens;
  • Supporting 92 coding languages
  • Excellent performance in text-to-SQL, bug fix, etc.

2.3.LangChain

    是一个全方位的、基于大语言模型这种预测能力的应用开发工具。LangChain的预构建链功能,就像乐高积木一样,无论你是新手还是经验丰富的开发者,都可以选择适合自己的部分快速构建项目。对于希望进行更深入工作的开发者,LangChain 提供的模块化组件则允许你根据自己的需求定制和创建应用中的功能链条。

    LangChain本质上就是对各种大模型提供的API的套壳,是为了方便我们使用这些 API,搭建起来的一些框架、模块和接口。

   LangChain的主要特性:
        1.可以连接多种数据源,比如网页链接、本地PDF文件、向量数据库等
        2.允许语言模型与其环境交互
        3.封装了Model I/O(输入/输出)、Retrieval(检索器)、Memory(记忆)、Agents(决策和调度)等核心组件
        4.可以使用链的方式组装这些组件,以便最好地完成特定用例。
        5.围绕以上设计原则,LangChain解决了现在开发人工智能应用的一些切实痛点。


三、前置条件

3.1.基础环境

操作系统:centos7

Tesla V100-SXM2-32GB  CUDA Version: 12.2

3.2.下载模型

huggingface:

https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat/tree/main

ModelScope:

git clone https://www.modelscope.cn/qwen/CodeQwen1.5-7B-Chat.git

PS:

1. 根据实际情况选择不同规格的模型

3.3.安装虚拟环境

conda create --name langchain python=3.10
conda activate langchain
# -c 参数用于指定要使用的通道
conda install pytorch pytorch-cuda=11.8 -c pytorch -c nvidia
pip install langchain accelerate numpy transformers==4.38.1

ps: 注意在虚拟环境中安装


四、使用方式

4.1.生成代码能力

# -*-  coding = utf-8 -*-
import warningsfrom langchain import LLMChain
from langchain.llms import HuggingFacePipeline
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplatewarnings.filterwarnings("ignore")model_path = "/model/CodeQwen1.5-7B-Chat"local_llm = HuggingFacePipeline.from_model_id(model_id=model_path,task="text-generation",device=0,pipeline_kwargs={"max_new_tokens": 8192},
)system_template = "You are a helpful assistant."
system_message_prompt = SystemMessagePromptTemplate.from_template(system_template)human_template = """Question: {question}
Answer: Let's think step by step."""
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)prompt_template = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
prompt = prompt_template.format_prompt(question="用Python写一个冒泡排序算法的例子").to_messages()
print(prompt)llm_chain = LLMChain(prompt=prompt_template, llm=local_llm)
print(llm_chain.run(question="用Python写一个冒泡排序算法的例子"))

调用结果:

在IDEA中运行模型生成的代码

结论:

模型能根据需求生成可运行代码

4.2.修改代码的能力

示例说明:

把冒泡排序正确的代码故意修改为错误,异常为:UnboundLocalError: local variable 'j' referenced before assignment

# -*-  coding = utf-8 -*-
import warningsfrom langchain import LLMChain
from langchain.llms import HuggingFacePipeline
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplatewarnings.filterwarnings("ignore")model_path = "/model/CodeQwen1.5-7B-Chat"local_llm = HuggingFacePipeline.from_model_id(model_id=model_path,task="text-generation",device=0,pipeline_kwargs={"max_new_tokens": 8192},
)system_template = "You are a helpful assistant."
system_message_prompt = SystemMessagePromptTemplate.from_template(system_template)human_template = '我用Python写了一个冒泡排序的算法例子,但是运行结果不符合预期,请修改,具体代码如下: {code}'human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)code = '''
def bubble_sort(numbers):n = len(numbers)for i in range(n-1):for j in range(0, n-j-1):if numbers[j] > numbers[j+1]:numbers[j], numbers[j+1] = numbers[j+1], numbers[j]return numbersif __name__ == "__main__":unsorted_list = [64, 34, 25, 12, 22, 11, 90]sorted_list = bubble_sort(unsorted_list)print("Sorted List:", sorted_list)         
'''prompt_template = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
llm_chain = LLMChain(prompt=prompt_template, llm=local_llm)
print(llm_chain.run(code=code))

调用结果:

结论:

模型能发现问题,并把异常修正

这篇关于开源模型应用落地-CodeQwen模型小试-集成langchain(四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988683

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库

SpringBoot整合MybatisPlus的基本应用指南

《SpringBoot整合MybatisPlus的基本应用指南》MyBatis-Plus,简称MP,是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,下面小编就来和大家介绍一下... 目录一、MyBATisPlus简介二、SpringBoot整合MybatisPlus1、创建数据库和