【卫星影像三维重建-全流程代码实现】点云Mesh重构

2024-05-14 10:12

本文主要是介绍【卫星影像三维重建-全流程代码实现】点云Mesh重构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点云—>Mesh模型

  • 1.介绍
    • 1.1 背景
    • 1.2 效果示意
  • 2 算法实现
    • 2.1 依赖库
    • 2.2 实验数据
    • 2.3 代码实现
    • 2.4 实验效果
  • 3.总结

1.介绍

1.1 背景

(1)本文主要内容是将三维点云(离散的三维点)进行表面重建生成Mesh网格,之前有篇关于开源软件-Cars-Mesh使用,它是对开源软件-Cars使用生成的点云进行处理得到Mesh网格结构,由于使用cars-mesh需要的配置文件较多,深入其内部涉及到点云mesh构建部分,得出如下结论:

cars-mesh主要有三种mesh构建方法:

  1. 泊松表面重建(poisson_reconstruction)
  2. Delaunay 三角剖分(delaunay_2d_reconstruction)
  3. ball_pivoting_reconstruction

此外还有移动立方体(Marching Cubes Algorithm)、贪婪投影三角化(Greedy Triangulation)等方法。

(2)由于基于卫星影像生成的建筑物点云往往只有建筑物屋顶点云,建筑物立面几乎没有点云,因此充分考虑这种特点,选取了Delaunay三角剖分的方法进行重建,能够保持建筑物立面垂直以及屋顶有棱有角。

1.2 效果示意

如下效果是在meshlab中呈现的:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 算法实现

2.1 依赖库

本算法依赖三维点云处理库open3d以及在二维上进行三角剖分的Delaunay实现函数,这里在scipy和matplotlib均有实现,本文选择了scipy中的。

2.2 实验数据

vertices.ply,其只包含点的xyz信息,点云对应的颜色无。实验数据见资源绑定,包含原始点云和mesh构建后的数据,效果在cloudcompare中按照高程渲染效果如下:
在这里插入图片描述

2.3 代码实现

import open3d as o3d
import numpy as np
from scipy.spatial import Delaunay
import matplotlib.tri as mtriclass Mesh:def __init__(self, vertices, triangles, vertex_colors=None):self.vertices = vertices		self.triangles = trianglesself.vertex_colors = vertex_colorsdef delaunay_2d_reconstruction(pcd_file: str, method: str = "scipy") -> Mesh:"""2.5D Delaunay triangulation: Delaunay triangulation on the planimetricpoints and add afterwards the z coordinates.Parameters----------pcd_file: strPath to the PLY file containing point cloud data.method: str, default='scipy'Method to use for Delaunay 2.5D triangulation. Available methods are'scipy' and 'matplotlib'.Returns-------mesh: MeshMesh object containing vertices, triangles, and vertex colors."""# Load point cloud from PLY filepcd = o3d.io.read_point_cloud(pcd_file)# Get points, colors, and z coordinates from point cloudpoints = np.asarray(pcd.points)[:, :2]  # Project points to XY planecolors = np.asarray(pcd.colors)# Perform 2D Delaunay triangulationif method == "scipy":mesh_data = Delaunay(points)elif method == "matplotlib":mesh_data = mtri.Triangulation(points[:, 0], points[:, 1])# Construct meshmesh_vertices = np.hstack([points, np.zeros((len(points), 1))])mesh_triangles = mesh_data.simplices# Set z coordinates based on the original point cloudz_coordinates = np.asarray(pcd.points)[:, 2]mesh_vertices[:, 2] = z_coordinates# Create Mesh object with vertex colorsmesh = Mesh(mesh_vertices, mesh_triangles, vertex_colors=colors)return meshdef save_mesh_as_ply(mesh: Mesh, filename: str):"""Save mesh as a PLY file.Parameters----------mesh: MeshMesh object containing vertices, triangles, and vertex colors.filename: strPath to save the PLY file."""# Create Open3D TriangleMesh objectmesh_o3d = o3d.geometry.TriangleMesh()mesh_o3d.vertices = o3d.utility.Vector3dVector(mesh.vertices)mesh_o3d.triangles = o3d.utility.Vector3iVector(mesh.triangles)# Set vertex colorsif mesh.vertex_colors is not None:mesh_o3d.vertex_colors = o3d.utility.Vector3dVector(mesh.vertex_colors)# Save TriangleMesh object to PLY fileo3d.io.write_triangle_mesh(filename, mesh_o3d)# Example usage:
pcd_file = "vertices.ply"
method = "scipy"  # or "matplotlib"
mesh = delaunay_2d_reconstruction(pcd_file, method)
save_mesh_as_ply(mesh, "vertices_result_mesh.ply")

2.4 实验效果

整体效果在前面已经有呈现了,以下呈现几栋比较高的建筑效果:首先是mesh网格结构:
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.总结

整体而言,针对基于卫星影像生成的点云,Delaunay 三角剖分mesh构建效果良好:
(1)mesh重构本质上还是依赖于点云生成效果好坏,Delaunay 三角剖分在高建筑效果比较突出,但在低矮建筑效果差一些;
(2)在建筑物楼顶棱角细节层面以及与地面接触的部分有待进一步优化;
(3)TODO:尝试更多的mesh重构方法以及优化(2)

这篇关于【卫星影像三维重建-全流程代码实现】点云Mesh重构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988462

相关文章

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.