基于MetaGPT的智能体理论与实践-Task01

2024-05-14 02:12

本文主要是介绍基于MetaGPT的智能体理论与实践-Task01,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Task01:  MetaGPT环境配置

学习教程:https://github.com/datawhalechina/hugging-multi-agent

1  环境准备

1.1  安装python3.9+

通过:python3 --version, 查看此python版本为3.10.3

1.2  下载MetaGPT

开始,借用清华镜像,拉取metagpt==0.6.6,失败。

 然后直接用pip install metagpt==0.6.6 进行下载与安装。

 1.3  获取MetaGPT仓库源码

首先git clone命令获取源码

git clone https://github.com/geekan/MetaGPT.git

 然后进入 MetaGPT 目录

cd MetaGPT/

最后安装该仓库环境依赖

pip install -e .

 2   配置MetaGPT

下面使用ZHIPUAI为例,来MetaGPT

首先,需要在https://open.bigmodel.cn/  获取智谱的api_key。

然后使用config.yaml文件进行配置。

在MetaGPT/config/ 文件下,创建config.yaml文件,然后在文件中,添加如下配置信息。

llm:api_type: "zhipuai"  model: "glm-3-turbo"  base_url: "https://open.bigmodel.cn/api/paas/v4/chat/completions"  api_key: "your api_key"

3   DEMO测试 

异步相关的代码在ipython或者notebook环境下,asyncio.run(xxx)得改成await xxx

eg:asyncio.run(main())需要改成await main() 

代码中创建了两个角色,分别代表民主党候选人Alex和共和党候选人Bob。他们将在一个名为"US election live broadcast"的环境中进行对话。您的代码还定义了两个动作,分别是"AlexSay"和"BobSay",以及一个团队,其中包括了这两个角色。目标是模拟两位候选人在直播环境中就气候变化这一话题进行对话。这将有助于模拟候选人在现实选举中的表现和对话。 

import asynciofrom metagpt.actions import Action
from metagpt.environment import Environment
from metagpt.roles import Role
from metagpt.team import Teamaction1 = Action(name="AlexSay", instruction="Express your opinion with emotion and don't repeat it")
action2 = Action(name="BobSay", instruction="Express your opinion with emotion and don't repeat it")
alex = Role(name="Alex", profile="Democratic candidate", goal="Win the election", actions=[action1], watch=[action2])
bob = Role(name="Bob", profile="Republican candidate", goal="Win the election", actions=[action2], watch=[action1])
env = Environment(desc="US election live broadcast")
team = Team(investment=10.0, env=env, roles=[alex, bob])asyncio.run(team.run(idea="Topic: climate change. Under 80 words per message.", send_to="Alex", n_round=5))

由于,这里使用的notebook,所以把上面代码最后一行改成:

await team.run(idea="Topic: climate change. Under 80 words per message.", send_to="Alex", n_round=5)

 

 

这篇关于基于MetaGPT的智能体理论与实践-Task01的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987467

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

Spring Boot统一异常拦截实践指南(最新推荐)

《SpringBoot统一异常拦截实践指南(最新推荐)》本文介绍了SpringBoot中统一异常处理的重要性及实现方案,包括使用`@ControllerAdvice`和`@ExceptionHand... 目录Spring Boot统一异常拦截实践指南一、为什么需要统一异常处理二、核心实现方案1. 基础组件

SpringBoot项目中Maven剔除无用Jar引用的最佳实践

《SpringBoot项目中Maven剔除无用Jar引用的最佳实践》在SpringBoot项目开发中,Maven是最常用的构建工具之一,通过Maven,我们可以轻松地管理项目所需的依赖,而,... 目录1、引言2、Maven 依赖管理的基础概念2.1 什么是 Maven 依赖2.2 Maven 的依赖传递机

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J