本文主要是介绍Bootloader+升级方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
随着设备的功能越来越强大,系统也越来越复杂,产品升级也成为了开发过程不可或缺的一道程序。在工程应用中,如何在不更改硬件的前提下通过软件的方式实现产品升级。通过Bootloader来实现固件的升级是一种极好的方式,Bootloader是单片机上电后运行的第一段程序,该程序主要负责固件的更新。
图1 固件升级
对于产品固件的升级,用户可采用AMetal提供的Bootloader单区、双区、差分升级算法及升级示例来进行产品开发。关于Bootloader升级算法的介绍如下:
Bootloader单区升级
单区bootloader通常是将芯片内部的Flash主要划分为bootloader区、APP区和参数区。bootloader用于引导程序,APP扇区是为了存放升级后的应用程序,参数区是用于存储特殊的参数,具体的扇区大小可以根据实际使用情况,进行合理划分。单区升级的典型模型如下:
图2 单区升级模型
【原理说明】
芯片上电后首先从首地址即bootloader开始执行,参数校验无误,跳转到APP扇区。若有升级的请求,程序跳转到首地址,在bootloader中接收新的固件,然后将APP区擦除。在新固件参数校验成功后,程序将从bootloader跳转到APP区执行应用程序,进而完成固件的升级。
【应用场景】
在擦除APP区的过程中,若设备突然断电,会造成APP区的应用程序无法启动。在这种情况下,虽然会重新跳转到bootloader接收新的固件,进而完成固件的升级;但也存在一些不必要的麻烦,即设备需要多次写入固件。因此该种升级算法只适用于本地升级,不能在程序正常运行的过程中升级,常适用于Flash容量较小的场景下。
Bootloader双区升级
【双区升级模型】
以ZLG116芯片为例,该芯片内部主Flash大小为64K(0x0800_0000 - 0x0800_FFFF),主要将Flash划分了四个部分:bootloader段扇区,应用段扇区,升级扇区(备份区),升级标志扇区。其中bootloader用于引导程序;应用扇区是为了存放升级后的应用程序;升级扇区是为了存储新的固件,用于备份固件;升级标志扇区是用于存储特定的标志等。用户可以根据自身的实际应用情况合理划分各区的大小,双区升级的典型模型如下所示:
图3 双区升级模型
【原理说明】
按照上述的ZLG116 Flash划分,程序首先从地址为0x08000000,即bootloader开始执行,参数校验通过后,跳转到应用区。在接收到升级需求后,先将新的固件写入起始地址为0x0800FC00的备份区,并擦除APP扇区。接着将update(备份区)存储的新固件写入到bootloader中,从而完成新固件的写入。若在擦除APP区的过程中受到其他因素的干扰,用户可以再次将备份区的固件写入bootloader。新固件的参数校验通过后,程序从bootloader跳转到起始地址为0x08003C00的APP区执行应用代码。
【应用场景】
相比于单区升级,双区升级的模型增加了一块备份扇区,用于存放新的固件。因此即使在擦除APP的时候,设备发生断电,双区升级也无需再次在bootloader中接收新固件,只需将备份区存储的固件传入到bootloader即可。该升级方式虽然可以避免单区升级只能在本地升级的苦恼,但无法降低传输固件的流量,不适用于开发板内存空间较小的场景下。并且双区升级不得不需要整个APP进行升级,这给产品升级带来了一些不便。
Bootloader差分升级
【差分包原理】
差分升级是将新老固件具有差异的部分剥离出来,例如固件从V1.1.0升级到V1.1.1,两个固件相比只修改了1K的内容,如下图红色部分为不同部分,将该部分剥离出来生成差分包Diff_V1.1.0~V1.11,通过云端将差分包推送到设备端,设备端接收完成之后,先解压差分包,再通过差分恢复算法,根据差分包中的数据标志,将新老固件进行融合,变成新的固件,从而完成升级。
图4 差分包原理
【差分升级模型】
以基于华大HC32L196芯片设计差分升级为例,该芯片Flash为256K(0x000_0000~0x0003_FFFF),首先需要对Flash进行划分,主要划分为4个部分:BootLoader区、应用区、download区、参数区。BootLoader区用于引导升级,应用区为升级后的应用程序,download区为下载差分包存储区间,参数区用于存储特定参数。各区大小按照实际使用情况,进行合理划分。差分升级的典型模型如下所示:
图5 差分升级模型
【原理说明】
按照图5所示的升级模型,设备上电后首先从bootloader开始执行,参数无误后跳转到应用区。当有升级的需求时,先擦除APP区,并将新老固件进行分包,然后按顺序对分包后的新老固件对应的每个小块进行差分压缩,最后将所有的压缩包合并成一个文件,形成了升级的固件。将新的升级固件存放在download扇区,然后将该固件写入bootloader中,若固件参数校验无误,则跳到应用区执行后续的程序,进而完成产品的升级。
【应用场景】
差分升级的优点是升级固件更小、下载速度也更快,也更加节省内存空间。相对于整包升级方式(单区升级/双区升级),其缺点是依赖特定固件。例如:某一差分包为V1.0固件升级到V1.1固件的差分包Diff_V1.0~V1.1,则该差分包只能用于升级版本号是V1.0固件的设备;对于其他版本号固件的设备不能用它升级。差分升级一般适用于希望降低传输固件的流量,或者开发板内存不足,不依靠特定升级固件的场景中。
这篇关于Bootloader+升级方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!