Kubernetes 弹性伸缩全场景解析

2024-05-13 12:58

本文主要是介绍Kubernetes 弹性伸缩全场景解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本系列的前三篇中,我们介绍了弹性伸缩的整体布局以及HPA的一些原理,HPA的部分还遗留了一些内容需要进行详细解析。在准备这部分内容的期间,会穿插几篇弹性伸缩组件的最佳实践。今天我们要讲解的是
cluster-proportional-autoscaler 。cluster-proportional-autoscaler是根据集群中节点的数目进行Pod副本数水平伸缩的组件,这个组件的产生主要是为了解决集群的核心组件负载弹性的问题。在一个Kubernetes集群中,除了APIServer等耳熟能详的Control Pannel组件,还有很多系统组件是部署在worker上的,例如CoreDNS、Ingress Controller、Istio等等。这些核心组件大部分和我们的应用接入层息息相关,也就是说每当我们的系统处理了一条外部的请求,可能都会调用这些组件。那么这就有可能由于这些组件的负载过大,造成应用的QPS达到瓶颈。那么一个集群该运行多少个核心组件副本呢?
很遗憾,这个问题是没有统一答案的,因为不同的类型的应用、不同的网络模型、不同的调度分布,都有可能会带来不同的挑战。在本篇文章中,我们不谈具体的指标和数据,只探讨解法。在本系列后面的文章中,会为大家深入解析。
大部分的情况下,核心组件的副本数目和集群的节点数目是成正比的,一个集群的节点数目越多,核心组件所需要的副本数就越多。今天我们以CoreDNS为例,通过cluster-proportional-autoscaler,来实现一个动态的、基于节点数目的核心组件动态伸缩。

cluster-proportional-autoscaler的使用

cluster-proportional-autoscaler和传统的Kubernetes组件设计有所不同,我们已经见惯了各种Controller、CRD或者Operator,而cluster-proportional-autoscaler走了另外一条非常简单的路。使用cluster-proportional-autoscaler只需要部署一个Yaml并选择一个伸缩的监听对象以及伸缩策略即可。如果需要有多个组件进行伸缩,那就部署多个Yaml,每个Yaml包含一个cluster-proportional-autoscaler。一个使用cluster-proportional-autoscaler弹性伸缩coredns的模板如下。

apiVersion: apps/v1kind: Deploymentmetadata:  name: dns-autoscaler  namespace: kube-system  labels:    k8s-app: dns-autoscalerspec:  selector:    matchLabels:       k8s-app: dns-autoscaler  template:    metadata:      labels:        k8s-app: dns-autoscaler        spec:      containers:      - name: autoscaler        image: registry.cn-hangzhou.aliyuncs.com/ringtail/cluster-proportional-autoscaler-amd64:v1.3.0        resources:            requests:                cpu: "200m"                memory: "150Mi"        command:          - /cluster-proportional-autoscaler          - --namespace=kube-system          - --configmap=dns-autoscaler          - --target=Deployment/coredns          - --default-params={"linear":{"coresPerReplica":16,"nodesPerReplica":2,"min":1,"max"100,"preventSinglePointFailure"true}}          - --logtostderr=true          - --v=2        serviceAccountName: admin         

cluster-proportional-autoscaler的伸缩策略主要有两种,一种是线性模型,一种是梯度模型。
简单的理解,线性模型就是 y = rate * x + min,设置最小值,以及伸缩的区间,并根据当前节点的数目,通过线性模型计算所需的核心组件数目。在上面的例子中,我们用的就是线性模型,线性模型支持的配置参数如下:

{      "coresPerReplica"2,      "nodesPerReplica"1,      "min"1,      "max"100,      "preventSinglePointFailure"true}

min、max、以及preventSinglePointFailure都比较好理解,coresPerReplica的意思是按照核心数目来计算副本集,nodesPerReplica是按照节点数目来计算副本集。用一个实际的例子进行举例,例如当前集群有两个节点,每个节点的配置是4C8G,那么如果按照coresPerReplica这个指标计算,则需要弹出4*2/2=4个副本。如果按照nodesPerReplica来计算,则需要弹出2*1 = 2个副本。此时cluster-proportional-autoscaler会取两者之间的大的数值,也就是4作为最后的伸缩数目进行扩容。
梯度模型就是分级的机制,每个梯度对应了一个副本,例如:

{      "coresToReplicas":      [        [ 11 ],        [ 643 ],        [ 5125 ],        [ 10247 ],        [ 204810 ],        [ 409615 ]      ],      "nodesToReplicas":      [        [ 11 ],        [ 22 ]      ]    }

这个配置表示存在coresToReplicas和nodesToReplicas两个梯度,其中coresToReplicas的梯度表示,最小为1个副本;CPU核心数目大于3小于64的时候,为2个副本;依次类推。同样nodesToReplicas表示1个节点的时候为1个副本,2个节点的时候为2个副本。

最后

至此,cluster-proportional-autoscaler的使用就给大家讲解完了,建议优先配置CoreDNS的autoscaler,对于负载不高的场景可以考虑节点副本1:2的比例,如果负载比较高,可以1:1的配置进行配置。

 

这篇关于Kubernetes 弹性伸缩全场景解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/985766

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

什么是Kubernetes PodSecurityPolicy?

@TOC 💖The Begin💖点点关注,收藏不迷路💖 1、什么是PodSecurityPolicy? PodSecurityPolicy(PSP)是Kubernetes中的一个安全特性,用于在Pod创建前进行安全策略检查,限制Pod的资源使用、运行权限等,提升集群安全性。 2、为什么需要它? 默认情况下,Kubernetes允许用户自由创建Pod,可能带来安全风险。

OWASP十大安全漏洞解析

OWASP(开放式Web应用程序安全项目)发布的“十大安全漏洞”列表是Web应用程序安全领域的权威指南,它总结了Web应用程序中最常见、最危险的安全隐患。以下是对OWASP十大安全漏洞的详细解析: 1. 注入漏洞(Injection) 描述:攻击者通过在应用程序的输入数据中插入恶意代码,从而控制应用程序的行为。常见的注入类型包括SQL注入、OS命令注入、LDAP注入等。 影响:可能导致数据泄

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

CSP 2023 提高级第一轮 CSP-S 2023初试题 完善程序第二题解析 未完

一、题目阅读 (最大值之和)给定整数序列 a0,⋯,an−1,求该序列所有非空连续子序列的最大值之和。上述参数满足 1≤n≤105 和 1≤ai≤108。 一个序列的非空连续子序列可以用两个下标 ll 和 rr(其中0≤l≤r<n0≤l≤r<n)表示,对应的序列为 al,al+1,⋯,ar​。两个非空连续子序列不同,当且仅当下标不同。 例如,当原序列为 [1,2,1,2] 时,要计算子序列 [