Kubernetes 弹性伸缩全场景解析

2024-05-13 12:58

本文主要是介绍Kubernetes 弹性伸缩全场景解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本系列的前三篇中,我们介绍了弹性伸缩的整体布局以及HPA的一些原理,HPA的部分还遗留了一些内容需要进行详细解析。在准备这部分内容的期间,会穿插几篇弹性伸缩组件的最佳实践。今天我们要讲解的是
cluster-proportional-autoscaler 。cluster-proportional-autoscaler是根据集群中节点的数目进行Pod副本数水平伸缩的组件,这个组件的产生主要是为了解决集群的核心组件负载弹性的问题。在一个Kubernetes集群中,除了APIServer等耳熟能详的Control Pannel组件,还有很多系统组件是部署在worker上的,例如CoreDNS、Ingress Controller、Istio等等。这些核心组件大部分和我们的应用接入层息息相关,也就是说每当我们的系统处理了一条外部的请求,可能都会调用这些组件。那么这就有可能由于这些组件的负载过大,造成应用的QPS达到瓶颈。那么一个集群该运行多少个核心组件副本呢?
很遗憾,这个问题是没有统一答案的,因为不同的类型的应用、不同的网络模型、不同的调度分布,都有可能会带来不同的挑战。在本篇文章中,我们不谈具体的指标和数据,只探讨解法。在本系列后面的文章中,会为大家深入解析。
大部分的情况下,核心组件的副本数目和集群的节点数目是成正比的,一个集群的节点数目越多,核心组件所需要的副本数就越多。今天我们以CoreDNS为例,通过cluster-proportional-autoscaler,来实现一个动态的、基于节点数目的核心组件动态伸缩。

cluster-proportional-autoscaler的使用

cluster-proportional-autoscaler和传统的Kubernetes组件设计有所不同,我们已经见惯了各种Controller、CRD或者Operator,而cluster-proportional-autoscaler走了另外一条非常简单的路。使用cluster-proportional-autoscaler只需要部署一个Yaml并选择一个伸缩的监听对象以及伸缩策略即可。如果需要有多个组件进行伸缩,那就部署多个Yaml,每个Yaml包含一个cluster-proportional-autoscaler。一个使用cluster-proportional-autoscaler弹性伸缩coredns的模板如下。

apiVersion: apps/v1kind: Deploymentmetadata:  name: dns-autoscaler  namespace: kube-system  labels:    k8s-app: dns-autoscalerspec:  selector:    matchLabels:       k8s-app: dns-autoscaler  template:    metadata:      labels:        k8s-app: dns-autoscaler        spec:      containers:      - name: autoscaler        image: registry.cn-hangzhou.aliyuncs.com/ringtail/cluster-proportional-autoscaler-amd64:v1.3.0        resources:            requests:                cpu: "200m"                memory: "150Mi"        command:          - /cluster-proportional-autoscaler          - --namespace=kube-system          - --configmap=dns-autoscaler          - --target=Deployment/coredns          - --default-params={"linear":{"coresPerReplica":16,"nodesPerReplica":2,"min":1,"max"100,"preventSinglePointFailure"true}}          - --logtostderr=true          - --v=2        serviceAccountName: admin         

cluster-proportional-autoscaler的伸缩策略主要有两种,一种是线性模型,一种是梯度模型。
简单的理解,线性模型就是 y = rate * x + min,设置最小值,以及伸缩的区间,并根据当前节点的数目,通过线性模型计算所需的核心组件数目。在上面的例子中,我们用的就是线性模型,线性模型支持的配置参数如下:

{      "coresPerReplica"2,      "nodesPerReplica"1,      "min"1,      "max"100,      "preventSinglePointFailure"true}

min、max、以及preventSinglePointFailure都比较好理解,coresPerReplica的意思是按照核心数目来计算副本集,nodesPerReplica是按照节点数目来计算副本集。用一个实际的例子进行举例,例如当前集群有两个节点,每个节点的配置是4C8G,那么如果按照coresPerReplica这个指标计算,则需要弹出4*2/2=4个副本。如果按照nodesPerReplica来计算,则需要弹出2*1 = 2个副本。此时cluster-proportional-autoscaler会取两者之间的大的数值,也就是4作为最后的伸缩数目进行扩容。
梯度模型就是分级的机制,每个梯度对应了一个副本,例如:

{      "coresToReplicas":      [        [ 11 ],        [ 643 ],        [ 5125 ],        [ 10247 ],        [ 204810 ],        [ 409615 ]      ],      "nodesToReplicas":      [        [ 11 ],        [ 22 ]      ]    }

这个配置表示存在coresToReplicas和nodesToReplicas两个梯度,其中coresToReplicas的梯度表示,最小为1个副本;CPU核心数目大于3小于64的时候,为2个副本;依次类推。同样nodesToReplicas表示1个节点的时候为1个副本,2个节点的时候为2个副本。

最后

至此,cluster-proportional-autoscaler的使用就给大家讲解完了,建议优先配置CoreDNS的autoscaler,对于负载不高的场景可以考虑节点副本1:2的比例,如果负载比较高,可以1:1的配置进行配置。

 

这篇关于Kubernetes 弹性伸缩全场景解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/985766

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决