Pandas中的get_dummies()函数实战应用详解

2024-05-13 11:44

本文主要是介绍Pandas中的get_dummies()函数实战应用详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、独热编码简介

二、Pandas中的get_dummies()函数

1. 基本用法

2. 实战案例

三、高级用法与注意事项

1. 处理缺失值

2. 添加前缀

3. 处理类别型变量中的重复值

4. 使用columns参数指定要转换的列

5. 处理稀疏矩阵

四、总结


在数据处理和分析中,类别型变量(Categorical Variables)的处理是一个重要的环节。类别型变量通常不能直接用于数值计算,因为它们是文本或标签形式的。为了能在诸如机器学习算法等需要数值输入的场景中使用这些变量,我们通常需要将它们转换为数值形式。Pandas库中的get_dummies()函数就是一种常用的转换方法,它可以将类别型变量转换为“独热编码”(One-Hot Encoding)形式。

一、独热编码简介

独热编码,也被称为一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位来表示,并且在任意时候只有一位有效。在数据分析中,这通常意味着为每个类别创建一个新的二进制列,如果原始数据中的某个实例属于该类别,则在新列中标记为1,否则为0。

二、Pandas中的get_dummies()函数

Pandas的get_dummies()函数是处理类别型变量的强大工具。该函数接受一个DataFrame或Series作为输入,并返回一个新的DataFrame,其中包含了原始数据中的每个唯一类别作为列,并为每个原始数据实例生成相应的独热编码。

1. 基本用法

假设我们有一个包含性别信息的DataFrame:

import pandas as pd  # 创建一个包含性别信息的DataFrame  
df = pd.DataFrame({  'gender': ['male', 'female', 'male', 'female', 'other']  
})  # 使用get_dummies()进行独热编码  
dummies = pd.get_dummies(df['gender'])  print(dummies)

输出:

female  male  other  
0       0     1      0  
1       1     0      0  
2       0     1      0  
3       1     0      0  
4       0     0      1

2. 实战案例

假设我们正在处理一个汽车销售数据集,其中包含了一些与汽车相关的特征,如品牌、颜色、车型等。我们的目标是预测汽车的销售价格。由于品牌、颜色等特征都是类别型变量,我们需要使用get_dummies()函数进行转换。

首先,加载数据集(这里假设我们已经有了一个CSV文件):

# 加载数据集  
data = pd.read_csv('car_sales.csv')  # 查看前几行数据  
print(data.head())

假设数据集的结构如下:

brand    color  model  price  ...  
0  Toyota   red    Corolla  18000  
1  Honda    blue   Accord   22000  
2  Toyota   black  Camry    25000  
3  Nissan   white  Sentra   16000  
4  Honda    red    Civic    19000  
...
我们可以使用get_dummies()函数对brand和color列进行转换:

# 对brand和color列进行独热编码  
dummies = pd.get_dummies(data[['brand', 'color']])  # 将独热编码后的DataFrame与原始DataFrame的其余部分合并  
# 注意:使用drop=True来避免原始类别列被包含在结果中  
data_encoded = pd.concat([data.drop(['brand', 'color'], axis=1), dummies], axis=1)  # 查看编码后的数据  
print(data_encoded.head())

输出将类似于:

model  price  ...  Toyota  Honda  Nissan  red  blue  black  white  
0  Corolla  18000  ...       1      0       0    1     0      0      0  
1   Accord  22000  ...       0      1       0    0     1      0      0  
2    Camry  25000  ...       1      0       0    0     0      1      0  
3   Sentra  16000  ...       0      0       1    0     0      0      1  
4    Civic  19000  ...       0      1       0    1     0      0      0  
...

三、高级用法与注意事项

1. 处理缺失值

如果原始数据中包含缺失值(NaN),get_dummies()函数会忽略这些值,即在独热编码后的DataFrame中,与缺失值对应的列将不会被设置为1。然而,在某些情况下,我们可能希望将缺失值视为一个单独的类别或进行其他处理。

2. 添加前缀

当数据集中有多个类别型变量时,使用get_dummies()函数转换后,可能会产生大量新的列名,这些列名可能与原始数据集中的其他列名冲突。为了解决这个问题,我们可以使用prefix参数为每个类别型变量添加前缀。

# 对brand和color列进行独热编码,并添加前缀  
dummies = pd.get_dummies(data[['brand', 'color']], prefix=['Brand', 'Color'])  # 将独热编码后的DataFrame与原始DataFrame的其余部分合并  
data_encoded = pd.concat([data.drop(['brand', 'color'], axis=1), dummies], axis=1)  # 查看编码后的数据  
print(data_encoded.head())

输出将类似于:

model  price  ...  Brand_Toyota  Brand_Honda  Brand_Nissan  Color_red  Color_blue  Color_black  Color_white  
0  Corolla  18000  ...           1            0             0          1           0            0            0  
1   Accord  22000  ...           0            1             0          0           1            0            0  
2    Camry  25000  ...           1            0             0          0           0            1            0  
3   Sentra  16000  ...           0            0             1          0           0            0            1  
4    Civic  19000  ...           0            1             0          1           0            0            0  
...

3. 处理类别型变量中的重复值

如果类别型变量中存在重复值,即某个值在多个实例中重复出现,get_dummies()函数仍然会为该值创建一个新的列,并在相应的实例中标记为1。但是,请注意,在某些情况下,重复值可能表示相同的信息或需要合并,因此在使用get_dummies()函数之前,最好先对数据进行清洗和预处理。

4. 使用columns参数指定要转换的列

如果DataFrame中包含多个列,但只想对其中某些列进行独热编码,可以使用columns参数指定要转换的列。这有助于减少不必要的计算和提高效率。

# 只对brand列进行独热编码  
dummies = pd.get_dummies(data, columns=['brand'])  # 将独热编码后的DataFrame与原始DataFrame的其余部分合并  
data_encoded = pd.concat([data.drop('brand', axis=1), dummies], axis=1)  # 查看编码后的数据  
print(data_encoded.head())

5. 处理稀疏矩阵

当类别型变量具有大量的唯一值时,独热编码后的DataFrame可能会变得非常稀疏(即大部分值为0)。在这种情况下,可以考虑使用稀疏矩阵来存储数据,以节省内存并提高计算效率。Pandas的get_dummies()函数支持通过sparse参数生成稀疏矩阵。

# 使用稀疏矩阵进行独热编码  
dummies_sparse = pd.get_dummies(data[['brand', 'color']], sparse=True)  # 查看稀疏矩阵  
print(dummies_sparse.head())

需要注意的是,稀疏矩阵在某些操作中可能不如普通DataFrame方便,因此在使用之前需要仔细考虑。

四、总结

Pandas的get_dummies()函数是处理类别型变量的强大工具,它可以将类别型变量转换为独热编码形式,方便后续的数据分析和机器学习算法应用。在使用该函数时,需要注意处理缺失值、添加前缀、处理重复值、指定要转换的列以及处理稀疏矩阵等问题。通过合理设置参数和结合其他数据处理技术,可以充分利用get_dummies()函数的功能,提高数据处理的效率和准确性。

这篇关于Pandas中的get_dummies()函数实战应用详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/985611

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip