SeetaFace6人脸活体检测C++代码实现Demo

2024-05-13 06:44

本文主要是介绍SeetaFace6人脸活体检测C++代码实现Demo,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        SeetaFace6包含人脸识别的基本能力:人脸检测、关键点定位、人脸识别,同时增加了活体检测、质量评估、年龄性别估计,并且顺应实际应用需求,开放口罩检测以及口罩佩戴场景下的人脸识别模型。

        官网地址:https://github.com/SeetaFace6Open/index

1. 概述

        活体检测是判断人脸图像是来自真人还是来自攻击假体(照片、视频等)的方法。

        人脸识别系统存在被伪造攻击的风险。因此需要在人脸识别系统中加入活体检测,验证用户是否为真实活体本人操作,以防止照片、视频、以及三维模型的入侵,从而帮助用户甄别欺诈行为,保障用户的利益。

        活体检测分为静默活体检测和配合式活体检测。配合式活体检测即“张张嘴”、“眨眨眼”、“摇摇头”之类;多应用于APP刷脸登录、注册等。静默活体检测是不需要任何动作配合,通过算法和摄像头的配合,进行活体判定;使用起来非常方便,用户在无感的情况下就可以通过检测比对,效率非常高。

    《GB∕T 41772-2022 信息技术 生物特征识别 人脸识别系统技术要求》给出了假体攻击类型包括不限于二维假体攻击和三维假体攻击,如下表所示。

二维假体攻击

二维静态纸张图像攻击

样本材质

打印纸、亚光相纸、高光相纸、绒面相纸、哑粉纸、铜版纸等

样本质量

分辨率、清晰度、大小、角度、光照条件、完整度等

呈现方式

距离、角度、移动、弯曲、折叠等

裁剪方式

图像是否扣除眼部、鼻子、嘴巴等

二维静态电子图像攻击

设备类型

移动终端、微型计算机等

设备显示性能

分辨率、亮度、对比度等

样本质量

分辨率、清晰度、大小、角度、光照条件、完整度等

呈现方式

距离、角度、移动等

二维动态图像攻击

图像类型

录制视频、合成视频等

设备类型

移动终端、微型计算机等

设备显示性能

分辨率、亮度、对比度等

图像质量

分辨率、清晰度、帧率等

呈现方式

距离、角度、移动等

三维假体攻击

三维面具攻击

面具材质

塑料面具、三维纸张面具、硅胶面具等

呈现方式

距离、角度、移动等

光线条件

正常光、强光、弱光、逆光等

裁剪方式

面具是否扣除眼部、鼻子、嘴巴等

三维头模攻击

头模材质

泡沫、树脂、全彩砂岩、石英砂等

呈现方式

距离、角度、移动等

光线条件

正常光、强光、弱光、逆光等

2. SeetaFace6活体检测

        SeetaFace6的活体检测方案,提供了全局活体检测和局部活体检测 两个方法。

  • 全局活体检测就是对图片整体做检测,主要是判断是否出现了活体检测潜在的攻击介质,如手机、平板、照片等等。
  • 局部活体检测是对具体人脸的成像细节通过算法分析,区别是一次成像和二次成像,如果是二次成像则认为是出现了攻击。

2.1 基本使用

        活体检测识别器可以加载一个局部检测模型或者局部检测模型+全局检测模型。

        只加载一个局部检测模型:

#include <seeta/FaceAntiSpoofing.h>
seeta::FaceAntiSpoofing *new_fas() {seeta::ModelSetting setting;setting.append("fas_first.csta");return new seeta::FaceAntiSpoofing(setting);
}

        或者局部检测模型+全局检测模型,启用全局检测能力:

#include <seeta/FaceAntiSpoofing.h>
seeta::FaceAntiSpoofing *new_fas_v2() {seeta::ModelSetting setting;setting.append("fas_first.csta");setting.append("fas_second.csta");return new seeta::FaceAntiSpoofing(setting);
}

        调用有两种模式,一个是单帧识别,另外就是视频识别。 其接口声明分别为:

seeta::FaceAntiSpoofing::Status seeta::FaceAntiSpoofing::Predict( const SeetaImageData &image, const SeetaRect &face, const SeetaPointF *points ) const;
seeta::FaceAntiSpoofing::Status seeta::FaceAntiSpoofing::PredictVideo( const SeetaImageData &image, const SeetaRect &face, const SeetaPointF *points ) const;

        从接口上两者的入参和出参的形式是一样的。出参这里列一下它的声明:

class FaceAntiSpoofing {
public:/*     * 活体识别状态     */enum Status{REAL = 0,       ///< 真实人脸SPOOF = 1,      ///< 攻击人脸(假人脸)FUZZY = 2,      ///< 无法判断(人脸成像质量不好)DETECTING = 3,  ///< 正在检测};
}

        单帧识别返回值会是REAL、SPOOF或FUZZY。 视频识别返回值会是REAL、SPOOF、FUZZY或DETECTING。

        两种工作模式的区别在于前者属于一帧就是可以返回识别结果,而后者要输入多个视频帧然后返回识别结果。在视频识别输入帧数不满足需求的时候,返回状态就是DETECTING。

        这里给出单帧识别调用的示例:

void predict(seeta::FaceAntiSpoofing *fas, const SeetaImageData &image, const SeetaRect &face, const SeetaPointF *points) {auto status = fas->Predict(image, face, points);switch(status) {case seeta::FaceAntiSpoofing::REAL:std::cout << "真实人脸" << std::endl; break;case seeta::FaceAntiSpoofing::SPOOF:std::cout << "攻击人脸" << std::endl; break;case seeta::FaceAntiSpoofing::FUZZY:std::cout << "无法判断" << std::endl; break;case seeta::FaceAntiSpoofing::DETECTING:std::cout << "正在检测" << std::endl; break;}
}

        这里需要注意face和points必须对应,也就是points必须是face表示的人脸进行关键点定位的结果。points是5个关键点。当然image也是需要识别的原图。

        如果是视频识别模式的话,只需要将predict中的fas->Predict(image, face, points)修改为fas->PredictVideo(image, face, points)。

        在视频识别模式中,如果该识别结果已经完成,需要开始新的视频的话,需要调用ResetVideo重置识别状态,然后重新输入视频:

void reset_video(seeta::FaceAntiSpoofing *fas) {fas->ResetVideo();
}

        当了解基本调用接口之后,就可以直接看出来,识别接口直接输入的就是单个人脸位置和关键点。因此,当视频或者图片中存在多张人脸的时候,需要业务决定具体识别哪一个人脸。一般有这几种选择,1. 只做单人识别,当出现两个人的时候识别中止。2. 识别最大的人脸。3. 识别在指定区域中出现的人脸。这几种选择对精度本身影响不大,主要是业务选型和使用体验的区别。

2.2 参数设置

        设置视频帧数:

void SetVideoFrameCount( int32_t number );

        默认为10,当在PredictVideo模式下,输出帧数超过这个number之后,就可以输出识别结果。这个数量相当于多帧识别结果融合的融合的帧数。当输入的帧数超过设定帧数的时候,会采用滑动窗口的方式,返回融合的最近输入的帧融合的识别结果。一般来说,在10以内,帧数越多,结果越稳定,相对性能越好,但是得到结果的延时越高。

        设置识别阈值:

void SetThreshold( float clarity, float reality );

        默认为(0.3, 0.8)。活体识别时,如果清晰度(clarity)低的话,就会直接返回FUZZY。清晰度满足阈值,则判断真实度(reality),超过阈值则认为是真人,低于阈值是攻击。在视频识别模式下,会计算视频帧数内的平均值再跟帧数比较。两个阈值都符合,越高的话,越是严格。

        设置全局检测阈值:

void SetBoxThresh(float box_thresh);

        默认为0.8,这个是攻击介质存在的分数阈值,该阈值越高,表示对攻击介质的要求越严格,一般的疑似就不会认为是攻击介质。这个一般不进行调整。

        以上参数设置都存在对应的Getter方法,将方法名称中的Set改为Get就可以访问对应的参数获取了。

2.3 参数调试

        在应用过程中往往不可避免对阈值产生疑问,如果要调试对应的识别的阈值,这里我们给出了每一帧分数的获取函数。

        下面给出识别之后获取识别具体分数的方法:

void predict_log(seeta::FaceAntiSpoofing *fas, const SeetaImageData &image, const SeetaRect &face, const SeetaPointF *points) {auto status = fas->Predict(image, face, points);float clarity, reality;fas->GetPreFrameScore(&clarity, &reality);std::cout << "clarity = " << clarity << ", reality = " << reality << std::endl;
}

        在Predict或者PredictVideo之后,调用GetPreFrameScore方法可以获取刚刚输入帧的识别分数。

3. 演示Demo

3.1 开发环境

  • Windows 10 Pro x64
  • Visual Studio 2015
  • Seetaface6

3.2 功能介绍

        演示程序主界面如下图所示,包括参数显示、实时活体检测、取消等功能。

3.3 效果测试

        二维假体攻击,包括二维静态纸张图像攻击、二维静态电子图像攻击、二维动态图像攻击,检测效果还是不错。

        三维假体攻击,除了塑料材质检测效果还可以,其他材质基本无法正确检测。

3.4 下载地址

        开发环境:

  • Windows 10 pro x64
  • Visual Studio 2015
  • Seetaface6

        VS工程下载:SeetaFace6人脸活体检测C++代码实现Demo

这篇关于SeetaFace6人脸活体检测C++代码实现Demo的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984968

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima