带你手撕红黑树! c++实现 带源码

2024-05-13 01:52
文章标签 c++ 实现 源码 黑树 撕红

本文主要是介绍带你手撕红黑树! c++实现 带源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、概念

二、特性

三、接口实现

1、插入

情况一:p为黑,结束

情况二:p为红

1)叔叔存在且为红色

2)u不存在/u存在且为黑色

(1)p在左,u在右

(2)u在左,p在右

2、检查平衡

四、对红黑树的理解

五、原码


一、概念

红黑树:AVL树不好控制(严格平衡),所以推出了红黑树
不用高度控制平衡,用颜色
最长路径<= 最短路径*2
红黑树是近似平衡

二、特性

1、每个节点不是红色就是黑色
2、根节点是黑色的
3、如果一个节点是红色的,则他的两个孩子是黑色的(不存在连续的红色节点)
4、如果对于每个节点,从该节点到其后代节点的简单路径上,均包含相同数目的黑色节点(每条路径的黑色节点数量相等)
5、每个叶子节点都是黑色的(叶子节点指的是空节点)

最短路径:全黑
最长路径:一黑一红

三、接口实现

1、插入

说明:p为父,cur为当前节点,u为叔叔节点,g为祖父节点

情况一:p为黑,结束

情况二:p为红

1)叔叔存在且为红色

怎么办?
将p和u变黑,g变红    
    (1)如果g是根节点,再变为黑色


    (2)如果g不是根,继续往上调整 g变cur, parent = g->parent


        有可能会一路更新到根节点,即父节点不存在
        c++库内部的处理是,直接将parent作为while循环条件之一
        然后,在单次数循环结束位置将parent置为黑
        保证parent为黑

2)u不存在/u存在且为黑色

p改黑,g改红,再旋转

(1)p在左,u在右

情况1
//        g
//      p          u
//  c
//
p在左,u在右:以g进行右单旋
p变黑,g变红
 
情况2
//        g
//      p          u
//            c
//
c在右:以p进行左单旋变为情况1
//        g
//      c          u
//  p
//
需修改p和c位置
//        g
//      p          u
//  c
//
再以g右单旋转
p变黑,g变红

(2)u在左,p在右

情况1
//        g
//      u          p
//                  c
//
以g进行左单旋
p变黑,g变红
 


情况2
//        g
//      u          p
//                   c
//
以p进行右单旋变为情况1
//        g
//      u          c
//                p
//
需修改p和c位置
//        g
//      u          p
//                 c
//
再以g右单旋转
p变黑,g变红

2、检查平衡


计算每一条路径的黑色节点的个数
检查是否有连续红色节点
递归
走到空的时候,说明该路径走到头了


p为红之后,就要判断p是左边还是右边
即:u在左,p在右 和 u在右,p在左
就是在p为红色的同时话要细分为两种大情况
然后对于内部还要进行u的判断

四、对红黑树的理解

红黑树的核心,是保证最长路径的长度不超过最短路径的两倍
怎么做到整个特性呢?
通过维持其四个特性
尤其是特性三和特性四
所以,在插入的时候,就要考虑不能打破特性3和特性4
特性3是不能有连续的红色节点
特性4是所有路径的黑色节点个数相同
相比之下,维持特性4明显要比特性3更加严格
维持成本更高,同时也更加难以控制
所以,在插入的时候,为了便于控制和成本
我们选择插入红色节点
剩下的问题,就是要怎么避免出现连续两个红色节点
如果插入的时候,父节点就已经是一个黑色节点
那么,直接插入,此时不会出现连续两个红色节点
同时,这个条路径的黑色节点个数也没有发生变化
但是,如果插入的父节点是一个红色节点呢?
问题来了
怎么办?
父节点是红色,插入的也是红色
只能有一个变黑色
谁变?
新插入节点吗?
如果新插入节点是黑色,那么插入路径黑色节点个数就增大了
就要去维护其他的所有路径的
何其恐怖
所以,只能父节点变黑色
同时,如果父亲有兄弟,就是叔叔节点存在
父节节点变为黑色,父亲节点的路径黑色节点多了一个
那么作为另外一条路径的叔叔节点,也必须变为黑色,也增加一个黑色节点,才能保持
而,父节点的父节点,即祖父节点一定存在且为黑色
因为父节点和叔叔节点(如果存在)已经变为黑色
那么,对于祖父作为根节点的这课子树来说,多了一个黑色节点
因此,祖父节点必须变为红色
以保持平衡
如此,以祖父节点作为根节点的这棵子树已经保持了黑色节点数量不变
但是因为祖父节点已经变为了红色,需要继续往上更改颜色

五、原码

#pragma once
#include<vector>
#include<iostream>
using namespace std;enum Colour{BLACK,RED};template<class K, class V>struct BRTreeNode{BRTreeNode<K, V>* _parent;BRTreeNode<K, V>* _right;BRTreeNode<K, V>* _left;pair<K, V> _kv;Colour _col;BRTreeNode(const pair<K, V>& kv):_parent(nullptr), _right(nullptr), _left(nullptr), _kv(kv), _col(RED){}};template<class K, class V>class BRTree{typedef BRTreeNode<K, V> Node;public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* cur = _root;Node* parent = nullptr;while (cur){if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else//找到相等key{return false;}}cur = new Node(kv);cur->_col = RED;if (kv.first < parent->_kv.first)//插入左{parent->_left = cur;}else //插入右{parent->_right = cur;}cur->_parent = parent;//插入之后,要进行颜色调整while (parent && parent->_col == RED)//如果为空/黑色节点,直接结束{//Node* grandfather = parent->_parent;if (parent == grandfather->_left)//p为左,u为右{Node* uncle = grandfather->_right;//如果叔叔存在,且为红色if (uncle && uncle->_col == RED){//修改颜色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;//向上更新cur = grandfather;parent = cur->_parent;}else//叔叔不存在/叔叔存在且为黑色{if (cur == parent->_left){//		   g//	   p      u//  c//RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		   g//	   p      u//      c//RotateL(parent);//		   g//	   c      u//  p//RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else//p为右,u为左{Node* uncle = grandfather->_left;//如果叔叔存在,且为红色if (uncle && uncle->_col == RED){//修改颜色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;//向上更新cur = grandfather;parent = cur->_parent;}else//叔叔不存在/叔叔存在且为黑色{if (cur == parent->_right){//		   g//	   u      p//					c//RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		   g//	   u      p//          c//RotateR(parent);//		   g//	   u      c//  				p//RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}//右旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)//subLR可能为空{subLR->_parent = parent;}subL->_right = parent;Node* ppNode = parent->_parent;parent->_parent = subL;//注意修改顺序if (parent == _root){_root = subL;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subL;}else{ppNode->_right = subL;}subL->_parent = ppNode;}}//左旋void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL){subRL->_parent = parent;}subR->_left = parent;Node* ppNode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subR;}else{ppNode->_right = subR;}subR->_parent = ppNode;}}//检查平衡bool isBalance(){if (_root->_col == RED){return false;}//找到任意一条路黑色节点个数Node* cur = _root;int refNum = 0;while (cur){if (cur->_col == BLACK){refNum++;}cur = cur->_left;}return Check(_root, 0,  refNum);return 1;}void Inoder(){_Inoder(_root);cout << endl;}private:bool Check(Node* root,int blackNum,const int refNum){//到路径结束位置检查黑色节点if (root == nullptr){if (blackNum != refNum){cout << "黑色节点不相等" << endl;return false;}// << blackNum << endl;return true;}//检查红色节点if (root->_col == RED && root->_parent->_col == RED){cout << root->_kv.first << "连续红节点" << endl;return false;}if (root->_col == BLACK){blackNum++;}return Check(root->_left, blackNum, refNum)&& Check(root->_right, blackNum, refNum);}void _Inoder(const Node* root){if (root == nullptr){return;}_Inoder(root->_left);cout << root->_kv.first << ":" << _root->_kv.second << endl;_Inoder(root->_right);}private:Node* _root = nullptr;};void BRTreeTest1(){int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };int b[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14,8, 3, 1, 10, 6, 4, 7, 14, 13 };BRTree<int, int> t;for (auto e : b){t.Insert({ e,e });}t.Inoder();int ret = t.isBalance();cout << ret << endl;}void BRTreeTest2(){int n = 10000000;//1000万个节点进行测试srand(time(0));vector<int> v;v.reserve(n);for (int i = 0; i < n; ++i){v.push_back(rand() + i);}size_t T1 = clock();BRTree<int, int> t;for (auto e : v){t.Insert(make_pair(e, e));}size_t T2 = clock();cout << "insert:" << T2 - T1 << endl;int ret = t.isBalance();cout << ret << endl;}

这篇关于带你手撕红黑树! c++实现 带源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984358

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo