0基础理解ECC并做题-攻防世界easy-ECC理解

2024-05-13 01:52

本文主要是介绍0基础理解ECC并做题-攻防世界easy-ECC理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

image-20240503204926584

image-20240503205755699

image-20240503205918615

基点p就是最初选定的那个点

image-20240505124546619

image-20240503210209758

1和2都是整数集合,但是1/2=0.5就不属于整数集合

image-20240503210328144

一直加,一直乘,还能保证有限个数字?这是因为采用了取模的运算,让元素始终都在有限的范围内。

image-20240503210728811

image-20240503210916732

image-20240503211043059

如何计算分数求模?

image-20240503211122926

设n=1/2mod23,那么n和1/2mod23是同余的。而后两边同时乘2,就可以得到下面的内容。

image-20240503211340424

负数求模的算法

image-20240503211628973

进而计算出2A的坐标,从而计算出3A,4A等等。

但是k那么大,这样计算岂不是很麻烦?

这时候我们就有了下面的计算方法

image-20240503212019705

注意:这里算出二进制后,将其反转,也就是10010111反转一下是11101001 ,后面也就有了2^0+2^1+2^2+2^4+2^7

先算出A,然后取A的2倍,得到2A,而后2A+A,而后在2A的基础上再取2倍得到4A,而后再将A+2A+4A,再将4A取2倍,得到8A,那么就是A+2A+4A+8A,依次类推。这就是倍数加法运算。

例题:攻防世界:easy_ecc

image-20240503212551512

附件内容

image-20240503212627961

有p,a,b的数值,就可以知道这个椭圆曲线就是

y=x^3+ax+b=x^3+16546484x+4548674875 出发点G是(6478674857,5636379357093)

那么公钥我们设置为Q=k(x,y)=kG

先将K=546768进行二进制,二进制计算遵循原则:为从低位到高位依次处理二进制位,若位为0,则将当前点加倍;若位为1,则将当前点加倍后再与基点相加。

计算2A(只给了一个基点G,可以看出是A=B的类型),使用方法,即是公式:

image-20240503213040066

解法1:脚本语言

 
class point:def __init__(self, x, y):self.x = xself.y = y
class ell:def __init__(self, p, a, b):self.p = pself.a = aself.b = bdef add(self, pA, pB):if pA.x == pB.x and pA.y == pB.y:k = mod((3 * (pA.x * pA.x) + self.a), (2 * pA.y), self.p)else:k = mod((pB.y - pA.y), (pB.x - pA.x), self.p)rx = k * k - pA.x - pB.xrx = rx % self.pry = k * (pA.x - rx) - pA.yry = ry % self.pR = point(rx, ry)return Rdef ne(self, n, G):s = str(bin(n)[::-1])print(s)sumG = NoneaddPoint = Gfor i in range(len(s)):if s[i] == '1':if sumG is None:sumG = addPointelse:#此处是用来计算SUMG的累加和sumG = self.add(sumG, addPoint)#无论是0还是1都加一次addPoint = self.add(addPoint, addPoint)return sumG
def mod(a, b, p):\# a/b mod pif b < 0:b = -ba = -areturn (a % p * pow(b, p - 2, p)) % p
p = 15424654874903
a = 16546484
b = 4548674875
ep = ell(p, a, b)
G = point(6478678675, 5636379357093)
k = 546768
flag = ep.ne(k, G)
print(flag.x + flag.y)
cyberpeace{19477226185390}

解释一下代码:

初始化
__init__:用于初始化新创建的对象。class point:def __init__(self, x, y):self.x = xself.y = y
这里是定义了一个点,将传入的点(x,y)赋值给self.x和self.y核心关键
class ell:def __init__(self, p, a, b):self.p = pself.a = aself.b = bdef add(self, pA, pB):if pA.x == pB.x and pA.y == pB.y:k = mod((3 * (pA.x * pA.x) + self.a), (2 * pA.y), self.p)else:k = mod((pB.y - pA.y), (pB.x - pA.x), self.p)rx = k * k - pA.x - pB.xrx = rx % self.pry = k * (pA.x - rx) - pA.yry = ry % self.pR = point(rx, ry)return Rdef ne(self, n, G):s = str(bin(n)[::-1])           10010111 --   11101001print(s)sumG = None                addPoint = G                         for i in range(len(s)):                          1           1           1           0         1            0         0        1if s[i] == '1':            if sumG is None:            sumG = addPoint                    sumG:G   else:#此处是用来计算SUMG的累加和sumG = self.add(sumG, addPoint)              G+2G=3G      3G+4G=7G              7G+16G=23G                     23G+128G=151G#无论是0还是1都自己加一次自己addPoint = self.add(addPoint, addPoint)      2G      2G+2G=4G     4G+4G=8G     16G       32G            64G       128G     256Greturn sumG
这里是定义了一个类ell,来完成一些列的操作。一点一点的看def __init__(self, p, a, b):self.p = pself.a = aself.b = b
初始化我们输入的p,a,b的数值。下面有个问题:这里的G点,也就是基点,到底是如何传进去的呢?def add(self, pA, pB):if pA.x == pB.x and pA.y == pB.y:k = mod((3 * (pA.x * pA.x) + self.a), (2 * pA.y), self.p)else:k = mod((pB.y - pA.y), (pB.x - pA.x), self.p)rx = k * k - pA.x - pB.xrx = rx % self.pry = k * (pA.x - rx) - pA.yry = ry % self.pR = point(rx, ry)return R
定义了一个加法规则,传入A,B两个点if pA.x == pB.x and pA.y == pB.y:如果A点和B点相同,也就是我们上面说的A=B的情况k = mod((3 * (pA.x * pA.x) + self.a), (2 * pA.y), self.p)

image-20240503223405494

计算出k的数值,这里的mod方法使用的是后面定义的mod的计算方法

def mod(a, b, p):\# a/b mod pif b < 0:b = -ba = -a#pow() 函数用于计算 b 的 p - 2 次幂并取模 preturn (a % p * pow(b, p - 2, p)) % p

这个Python函数mod(a, b, p)执行以下操作:实现a/b对模p进行计算。 检查除数的符号:如果b小于0,函数会将b和a都取其相反数。这是因为模运算中除数可以是负数,但在这个函数中,我们将其转换为正数以简化计算。 使用模逆元计算:函数使用了费马小定理的一个应用,即对于质数p,如果b与p互质(即它们的最大公约数为1),那么存在一个数x(即b^(p-2) % p),使得bx % p = 1。这个x被称为b关于模p的逆元。 计算模运算:通过(a % p) * (b^(p-2) % p),函数实现了a / b对模p的计算。这是因为a / b等价于a * (b^(-1)),而b^(-1)就是上面找到的模逆元。 最终取模:为了确保结果在0到p-1之间,函数对结果再次取模p。 总结来说,这个函数计算了a/b对模p的结果,其中b和p都是正整数,且p通常是一个质数,用于加密算法或者在有限域中进行计算。

 else:k = mod((pB.y - pA.y), (pB.x - pA.x), self.p)
如果A,B两点不相同,执行上面的方法计算Krx = k * k - pA.x - pB.xrx = rx % self.pry = k * (pA.x - rx) - pA.yry = ry % self.pR = point(rx, ry)return R
得出K后,计算x和y的值,并返回这个坐标def ne(self, n, G):s = str(bin(n)[::-1])print(s)sumG = NoneaddPoint = Gfor i in range(len(s)):if s[i] == '1':if sumG is None:sumG = addPointelse:sumG = self.add(sumG, addPoint)addPoint = self.add(addPoint, addPoint)return sumG
推算出公钥Q,使用的就是倍数加法运算,将私钥K,代码里是n,k后面我们可以传入。s = str(bin(n)[::-1])print(s)将n转换为二进制字符串,并反转字符串,并输出一下s的数值。sumG = None设置sumG的初始值为空addPoint = G将输入的基点赋值给addPoint#循环遍历逆向输出的二进制数字
for i in range(len(s)):#如果二进制数字是1if s[i] == '1':#如果sumG还是空值的话if sumG is None:#将addPoint的数值赋予给sumGsumG = addPoint#sumG不是空数值的话else:#执行自加,这个函数的功能是将addPoint加到sumG上,并将结果赋值给sumGsumG = self.add(sumG, addPoint)#在每次循环中,无论当前位是 '1' 还是 '0',都使用 add 函数将 addPoint 自身相加一次(即 addPoint = self.add(addPoint, addPoint)),模拟点的倍增过程。addPoint = self.add(addPoint, addPoint)

add 函数 功能说明:此函数实现的是椭圆曲线密码学中点的加法运算。给定椭圆曲线上两点 pA 和 pB,以及椭圆曲线方程的一些参数(隐含在类的属性中,如 self.a, self.p),计算这两点的和 R,结果同样位于同一条椭圆曲线上。 步骤分解: 判断特殊情况:首先检查 pA 和 pB 是否为同一点。如果是(即它们的坐标相同),根据椭圆曲线点加倍的公式计算斜率 k。公式为:[k = \text{mod}((3 \times (pA.x^2) + self.a), (2 \times pA.y), self.p)]。这里利用模运算保持结果在模 self.p 下。 常规情况处理:如果 pA 和 pB 不是同一个点,则按照点的加法规则计算斜率 k,公式为:[k = \text{mod}((pB.y - pA.y), (pB.x - pA.x), self.p)]。这同样确保了结果的正确性且在模意义下。 计算新点坐标: 根据 k 计算新点的 x 坐标 rx:[rx = k^2 - pA.x - pB.x],并取模 self.p 以确保结果落在期望的范围内。 接着计算 y 坐标 ry:[ry = k \times (pA.x - rx) - pA.y],同样对结果取模 self.p。 构造并返回新点:最后,使用计算出的 rx 和 ry 创建一个新的点 R 并返回。 ne 函数 功能说明:此函数实现了在椭圆曲线上通过多次点加操作计算一个点乘(即点 G 重复相加 n 次)的结果。这是椭圆曲线加密算法中的关键步骤,用于高效地计算大指数幂的点表示。 步骤分解: 转换整数为二进制:将输入的整数 n 转换为二进制字符串 s,并反转字符串以便从最低位开始处理。 初始化变量:设置 sumG 初始化为 None,表示累加结果的初始状态;addPoint 初始化为给定点 G,作为每次迭代中用于加法操作的基础点。 遍历二进制字符串:从最低位到最高位遍历二进制字符串 s 的每个字符。 对于遇到的每一个 '1',执行以下操作: 如果 sumG 仍为 None,则将其设为 addPoint。 否则,使用 add 函数将 sumG 与 addPoint 相加,并更新 sumG 为结果。 在每次循环中,无论当前位是 '1' 还是 '0',都使用 add 函数将 addPoint 自身相加一次(即 addPoint = self.add(addPoint, addPoint)),模拟点的倍增过程。 返回结果:遍历结束后,sumG 即为点 G 乘以 n 的结果,在椭圆曲线上的表示,最终返回 sumG。 综上,这两个函数共同实现了椭圆曲线上的点加法和点乘运算,是椭圆曲线密码学中的基础算子。

解法2:工具:ECCTOOL

image-20240505123800744

最后将Rx和Ry的数值相加就是flag

这篇关于0基础理解ECC并做题-攻防世界easy-ECC理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984353

相关文章

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con