分布式与一致性协议之PBFT算法(二)

2024-05-12 21:28

本文主要是介绍分布式与一致性协议之PBFT算法(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PBFT算法

如何替换作恶的主节点

虽然PBFT算法可以防止备份节点作恶,因为这个算法是由主节点和备份节点组成的,但是,如果主节点作恶(比如主机点接收到了客户端的请求,但就是默不作声,不执行三阶段协议),那么无论正常节点数有多少,备份节点肯定无法达成共识,整个集群也将无法正常运行。针对这个问题,我们该如何解决呢?
答案是视图变更,也就是通过领导者选举楚新的主节点,并替换掉作恶的主节点。(其中的"视图"可以理解为领导者任期内不同的视图值对应不同的主节点,比如,视图值为1时,主节点为A;视图值为2时,主节点为B)
需要注意的是,对于领导者模型算法而言,不管是非拜占庭容错算法(比如Raft算法)还是拜占庭容错算法(比如PBFT算法),领导者选举都是它们实现容错能力非常重要的一环。比如,对Raft算法而言,领导者选举实现了领导者节点的容错能力,避免了因领导者节点故障而导致的整个集群不可用的问题。而对PBFT算法而言,视图变更,除了能解决主节点故障导致的集群不可用的问题之外,还能解决主节点是恶意节点的问题。
既然领导者选举这么重要,那么PBFT算法到底是如何实现视图变更的呢?

主节点作恶会出现什么问题

在PBFT算法中,主节点作恶有如下几种情况:

  • 1.主节点接收到客户端请求后不做任何处理,也就是默不作声
  • 2.主节点接收到客户端请求后给不同的预准备请求分配不同的序号
  • 3.主节点只给部分系欸但发送预准备消息
    需要注意的是,不管出现哪种情况,共识都是无法达成的,也就是说,如果恶意节点当选了主节点,此时无论忠诚节点数有多少,忠诚节点们都将无法达成共识。而这种情况肯定是无法接受的,这需要我们设计一个机制,在发现主节点可能作恶时,将作恶的主节点替换掉,并保证最终只有忠诚的节点担任主节点。这样,PBFT算法才能保证当节点数为3f+1(其中f为恶意节点数)时,忠诚的节点们能就客户端提议的指令达成共识,并执行一致的指令。
    那么,在PBFT算法中,视图变更是如何选举出新的主节点并替换掉作恶的主节点呢?

如何替换作恶的主节点

在我看来,视图变更是保证PBFT算法稳定运行的关键。当系统运行异常时,客户端或备份节点出发系统的视图变更,通过"轮流上岗"的方式(公式是(V+1) mod |R|, 其中v为当前视图的值,|R|为节点数)选出下一个视图的主节点,最终选出一个忠诚、稳定运行的新主节点,并保证了共识的达成。为了更好地理解视图变更的原理,继续以苏秦为例展开分析,这次,咱们把叛徒楚当作"大元帅",让它扮演主节点的角色,如图所示。在这里插入图片描述

首先,苏秦联系楚,向楚发送包含作战指令"进攻"的请求,如图所示。在这里插入图片描述

当楚接收到苏秦的请求之后,为了达到破坏作战计划的目的,它选择默不作声,心想:我就是不执行三阶段协议,不执行你的指令,也不通知其他将军执行你的指令,你能把我怎么办?
结果,苏秦始终没有接收到两个相同的响应消息。待过了约定的事件后,苏秦会认为也许各位将军们出了什么问题。这时苏秦会直接给各位将军发送作战指令,如图所示。在这里插入图片描述

当赵、魏、韩接收到来自苏秦的作战指令时,它们会将作战指令分别发送给楚,并等待一段时间,如果在这段事件内它们仍未接收到来自楚地预准备消息,那么它们就认为楚可能已经叛变了,并发起视图变更(采用"轮流上岗"的方式选出新的大元帅,比如赵),向集群所有节点发送视图变更消息,如图所示。在这里插入图片描述

当赵接收到两个视图变更消息后,它就会发送新视图消息给其他将军,告诉大家,我是大元帅了,如图所示。在这里插入图片描述

其他将军在接收到新视图消息后,就认为选出了新的大元帅。然后,忠诚的将军们就可以一致地执行来自苏秦的作战指令了。
你看,叛变的大元帅就这样被发现和替换掉了,而最终大元帅一定是忠诚的。
回到计算机的世界中,我们应该如何理解呢?其实现原理与签名一样,这里不再赘述。不过为了更全面地理解视图变更,补充几点。
首先,当一个备份节点在定时器超时出发了视图变更后,它将暂时停止接收和处理除了检查点(CHECKPOINT)、视图变更、新视图之外的消息。你可以这样理解,这个节点认为现在集群处于异常状态,所以不能再处理客户端请求相关的消息。
其次,除了演示中触发备份节点进行视图变更的情况,下面几种情况也会触发视图变更,列举如下:

  • 1.备份节点发送了准备消息后,在约定的时间内未接收到来自其他节点的2f个相同的准备消息
  • 2.备份节点发送了提交消息后,在约定的时间内危机收到来自其他节点的2f个相同的提交消息
  • 3.备份节点接收到异常消息,比如视图值、序号和已接收的消息相同,但内容摘要不同。
    也就是说,视图变更除了能解决主节点故障和作恶的问题,还能避免备份节点长时间阻塞等待客户端请求被执行的情况。
    最后需要大家注意的是,Raft算法的而领导者选举和日志提交都是由集群的节点来完成的。但在PBFT算法中,客户端参与了拜占庭容错的实现,比如,客户端实现定时器,等待接收来自备份节点的响应,如果等待超时,则发送请求给所有节点

注意

相比Raft算法完全不适应有人作恶的场景,PBFT算法能容忍(n-1)/3个恶意节点(也可以是故障节点)。另外,相比Pow算法,PBFT算法的有点是不消耗算力,所以在日常实践中,PBFT算法比较适用于相对"可信"的场景,比如联盟链

PBFT算法的局限、解决办法和应用

如同一枚硬币具有正反两面,任何一个算法也会有优缺点,PBFT算法也不例外。接下来,将介绍PBFT算法的局限、解决办法,以及实际应用情况。
首先,在一般情况下,每个节点都需要持久化保存状态数据(比如准备消息),以便后续使用,但随着系统运行,数据会越来越多,最终肯定会出现存储空间不足的情况,那么,怎么解决这个问题?
答案是检查点机制,PBFT算法实现了检查点机制,来定时清理节点缓存在本地但已经不再需要的历史数据(比如预准备消息、准备消息和提交消息),节省了本地的存储空间,且不会影响系统的运行。
其次,我们都知道基于数字签名的加解密非常消耗性能,这也是为什么在一些对加解密要求高的场景中,大家常直接在硬件中实现加解密,比如IPSEC VPN。如果在PBFT算法中,所有消息都是签名消息,那么肯定非常消耗性能,且会极大地制约PBFT算法的落地场景,那么有什么办法优化这个问题吗?
答案是将数字签名和消息验证码(MAC)混合使用。具体来说,在PBFT算法中,只有视图变更消息和新视图消息采用签名消息,其他消息则采用消息验证码,这样一来,就可以节省大量加解密的性能开销。
最后,PBFT算法是一个能在实际场景中落地的拜占庭容错算法,它和区块链也结合紧密,具体有以下几个应用:

  • 1.相对可信、有许可限制的联盟链,比如Hyperledger Sawtooth
  • 2.与其他拜占庭容错算法结合来落地公有链,比如Zilliqa,将Pow算法和PBFT算法结合起来,实现公有链的共识协商。具体来说,PoW算法用于认证,证明节点不是"坏人",PBFT算法用于实现共识。针对PBFT算法消息数过多、不适应大型分布式系统的痛点,Zilliqa实现了分片(Sharding)技术。
    另外,也有团队因为PBFT算法消息数过多、不适应大型分布式系统的痛点,放弃使用PBFT算法,而是通过法律来约束"节点作恶"的行为,比如IBM的Hyperledger Fabric。技术是发展的,适合的才是最好的。在实际工作中,建议根据场景的可信度来决定是否采用PBFT算法,是否改进和优化PBFT算法。

重点总结

  • 1.PBFT算法是通过签名(或消息认证码MAC)来约束恶意节点的行为,同时采用三阶段协议,基于大多数原则达成共识的。另外,与口信消息型拜占庭问题之解(以及签名消息型拜占庭问题之解)不同的是,PBFT算法实现的是一系列值得共识,而不是单值的共识。
  • 2.客户端通过等待f+1个相同响应消息超时来发现主节点可能在作恶,此时客户端会发送客户端请求给所有集群节点,从而触发可能的视图变更。与Raft算法在领导者期间服务不可用类似,在视图变更时,PBFT集群也是无法提供服务的。

这篇关于分布式与一致性协议之PBFT算法(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/983775

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

Redis分布式锁使用及说明

《Redis分布式锁使用及说明》本文总结了Redis和Zookeeper在高可用性和高一致性场景下的应用,并详细介绍了Redis的分布式锁实现方式,包括使用Lua脚本和续期机制,最后,提到了RedLo... 目录Redis分布式锁加锁方式怎么会解错锁?举个小案例吧解锁方式续期总结Redis分布式锁如果追求

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig