不要盲目增加ip_conntrack_max-理解Linux内核内存

2024-05-12 12:18

本文主要是介绍不要盲目增加ip_conntrack_max-理解Linux内核内存,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/dog250/article/details/7107537

1.由ip_conntrack引出的Linux内存映射
有很多文章在讨论关于ip_conntrack表爆满之后丢弃数据包的问题,对此研究深入一些的知道Linux有个内核参数ip_conntrack_max,在拥有较大内存的机器中默认65536,于是疯狂的增加这个参数,比如设置成10000…00,只要不报设置方面的错误,就一定要设置成最大值。这种方式实在是将软件看成大神了,殊不知软件的技术含量还不如锅炉呢!
如果考虑的再全面一些,比如经验丰富的程序员或者网管,可能会想到内存的问题,他们知道所有的连接跟踪信息都是保存于内存中的,因此会考虑单纯放大这个ip_conntrack_max参数会占据多少内存,会权衡内存的占用,如果系统没有太大的内存,就不会将此值设置的太高。
但是如果你的系统有很大的内存呢?比如有8G的内存,分个1G给连接跟踪也不算什么啊,这是合理的,然而在传统的32位架构Linux中是做不到,为什么?因为你可能根本不懂Linux内核的内存管理方式。
内存越来越便宜的今天,linux的内存映射方式确实有点过时了。然而事实就摆在那里,ip_conntrack处于内核空间,它所需的内存必须映射到内核空间,而传统的32位Linux内存映射方式只有1G属于内核,这1G的地址空间中,前896M是和物理内存一一线性映射的,后面的若干空洞之后,有若干vmalloc的空间,这些vmalloc空间和一一映射空间相比,很小很小,算上4G封顶下面的很小的映射空间,一共可以让内核使用的地址空间不超过1G。对于ip_conntrack来讲,由于其使用slab分配器,因此它还必须使用一一映射的地址空间,这就是说,它最多只能使用不到896M的内存!
为何Linux使用如此“落后”的内存映射机制这么多年还不改进?其实这种对内核空间内存十分苛刻的设计在64位架构下有了很大的改观,然而问题依然存在,即使64位架构,内核也无法做到透明访问所有的物理内存,它同样需要把物理内存映射到内核地址空间后才能访问,对于一一映射,这种映射是事先确定的,对于大小有限(实际上很小)非一一映射空间,需要动态创建页表,页目录等。另外还有一个解释,那就是“内核本来就不该做ip_conntrack这种事”,那是协议栈的事,而不巧的是,Liunx的协议栈完全在内核中实现,可能在skb接收软中断中处理的ip_conntrack不能睡眠,因此也就不能将此任务交给进程,也就不能利用进程地址空间(进程地址空间[用户态+内核态]可以访问所有的物理内存)。
Linux之所以对内核内存要求如此苛刻,目的就是不想让你随意使用,因为它宝贵,你才更要珍惜它们。
2.在32位架构Linux系统上的实验
以下是为了证明以上的事实所作的实验,可能实验中使用的一些手段仍然不符合常识,然而我觉得成一家之言即可,毕竟这种方案永远不会也不可能出现在公司的标准文档上,那样会让人学会投机取巧或者称偷懒,但是为了备忘,还得有个地方留着,那就写成博客吧。
还有一个参数会影响查找连接跟踪的时间复杂度和空间复杂度,那就是ip_conntrack_buckets。该值描述了哈希桶的数量,理论上,这个值越大,哈希碰撞就会越小,查找时间就会越快,但是需要为每一个桶预分配一块不是很大的内存,如果桶数量很大,就会占用很大的内存,并且这些内存还都是宝贵的“仅有1G空间内的内核内存”,和ip_conntrack结构体的分配策略不同,这个哈希桶可以分配在vmalloc空间而不一定非要在一一线性映射空间。
2.1.快速压满ip_conntrack的方法
使用loadrunner绝对是一种方式,然而术业有专攻,工作之余我又很讨厌windows上的一切,因此需要采用其它方式,下班在家,只身一人,也不想使用netcat之类的“瑞士军刀”,我怕端口占满,又怕我的macbook狂热,因此需要再想办法。由于目的只是想测试ip_conntrack最多能占用多少内存,其实这个我早就知道了,只是想证实一下子,那么办法也就有了,那就是增加ip_conntrack结构体的大小,而这很容易,只需要在结构体后面增加一个很大的字段即可。下面的修改基于Red Hat Enterprise 5的2.6.18内核
2.2.测试前对ip_conntrack内核模块的修改
编辑$build/include/linux/netfilter_ipv4/ip_conntrack.h文件,在结构体ip_conntrack的最后加上下面一句:
char aaa[102400]; //这个102400是通过二分法得到的,如果设置成2xxxxx则在加载的时候就会使内核crash,因为这个数组是直接分配(类似栈上分配)的而不是动态分配的,它载入的时候很可能会冲掉内核的关键数据,因此还是选取一个可行的数值,然后慢慢加连接吧,毕竟扩大了起码100000倍呢~~
进入$src/net/ipv4/netfilter,执行:
make –C /lib/modules/2.6.18-92.e15/build SUBDIRS=`pwd` modules
如此一来加载ip_conntrack.ko之后,内核日志将打印出:
ip_conntrack version 2.4 (8192 buckets, 65536 max) - 102628 bytes per conntrack
由此看出ip_conntrack结构体已经增大了,这样撑满整个可用内存所需的网络连接压力就大大减小了,也就不用什么loadrunner之类的东西了。为了尽快撑满可以使用的内存,还要将关于ip_conntrack的所有timeout设置的比较长,相当长:
sysctl -w net.ipv4.netfilter.ip_conntrack_generic_timeout=600000
sysctl -w net.ipv4.netfilter.ip_conntrack_icmp_timeout=300000
sysctl -w net.ipv4.netfilter.ip_conntrack_tcp_timeout_close=1000000
sysctl -w net.ipv4.netfilter.ip_conntrack_tcp_timeout_time_wait=120000
sysctl -w net.ipv4.netfilter.ip_conntrack_tcp_timeout_last_ack=300000
sysctl -w net.ipv4.netfilter.ip_conntrack_tcp_timeout_close_wait=60000
sysctl -w net.ipv4.netfilter.ip_conntrack_tcp_timeout_fin_wait=120000
sysctl -w net.ipv4.netfilter.ip_conntrack_tcp_timeout_established=432000
sysctl -w net.ipv4.netfilter.ip_conntrack_tcp_timeout_syn_recv=600000
sysctl -w net.ipv4.netfilter.ip_conntrack_tcp_timeout_syn_sent=120000
这样既有的一个流就会“永久保持”了,一直占着ip_conntrack结构体不放,直到可用的内存溢出。
在加载了ip_conntrack模块之后,所有过往的数据包就会自动被追踪,下面编写以下脚本:
for (( i=1; i<255; i++));
do
for (( j=1; j<255; j++));
do
ping 192.168.$i.$j -c 1 -W 1
curl --connect-timeout 1 http://138.$i.$j.80/
curl --connect-timeout 1 http://38.$i.$j.80/
curl --connect-timeout 1 http://$i.1.$j.80/
curl --connect-timeout 1 http://$j.$i.9.8/
done
done
2.3.测试过程
本机配置:
内存:3032M,free命令识别3003M
执行上述脚本,抽根烟,拉一脬(pao),得到下列的数据:
封顶连接数:6149个
使用内存:886M
此时在本机ping 127.0.0.1也不通了,说明ip_conntrack已经达到了极限,同时由于在alloc ip_conntrack的地方插入了打印语句(肯定是一堆#号),内核打印了内存分配失败的信息。一共3G的内存,仅仅使用了886M(而且我不断使用sysctl –w vm.drop_caches=3清楚cache),剩余的都无法给ip_conntrack使用。为了使结果更有说服力,我在ip_conntrack模块的初始化函数中插入了下列代码:
for (j=0; I < 400; j++)
__get_free_pages(GFP_KERNEL, 8);
意思是我先占去内核空间的400M内存,看看最终总的连接跟踪数量是否也会减少相应的,得到数据如下:
封顶连接数:3421个
使用内存:879M
可见,内核内存被额外占据了,能分给ip_conntrack的就少了。更进一步,保持上述的__get_free_pages不变,再增加下列的代码:
for (j=0; I < 400; j++)
__get_free_pages(GFP_HIGHUSER, 8);
最终的结果如下:
封顶连接数:3394个
使用内存:1203M
可见,HIGHUSER内存并不会怎么影响内核内存,要知道用户进程的内存几乎都是使用这个HIGHUSER标识分配的。如果去掉GFP_KERNEL的分配,仅仅保留GFP_HIGHUSER的分配,得到下列结果:
封顶连接数:6449个
使用内存:1312M
可见,HIGHUSER内存的分配尽力在高端进行,不会怎么影响内核的一一映射空间。
2.4.测试结果
综上所述,32位架构上Linux的ip_conntrack使用的内存只能在内核地址空间的一一映射区,换句话说,它只能使用物理内存的前896M,除掉ip_conntrack结构体的添加的char aaa[],也是这个结果,只不过要想压满所有的可用内存,不是很容易,需要动用几台机器以及loadrunner之类的压力工具。
3.在64位架构Linux系统上做的实验
MD!由于我大动了内核数据结构,加载模块没有成功,至今仍在调试,排错,已几个时辰有余…
4.结论
最后,需要说明的是,ip_conntrack_max的初始值是内核根据你机器的内存计算出来的,包括ip_conntrack_buckets也是这样算出来的,内核之所以设置这样的初始值,那是经过精心测试的经验值,因此除了非要改不可,不要去提高这个值。如果你的机器面临大量连接,你提高了ip_conntrack_max的值,那么代价就是占用了大量可贵的内核内存,可能会引起其它的内核内存分配失败,并且,一旦内核内存使用超过了内核内存空间映射的阀值,那么系统会默默的丢弃你的数据包,而不会报出:
table full, dropping packet error and solution
之类的错误,这是可悲的一件事。
操作系统内核影响协议栈行为带来了一种错觉:我有这么多内存,为何不让我使用?!事实上,不是你要使用,而是内核要使用,你可以控制的只是进程,对于内核,程序员是没法控制的。当然你可以重新编译,甚至修改内核,甚至修改ip_conntrack的内存分配方式,不再使用伙伴系统的slab内存,而是重定向一个userspace,然则,然则这个开发需要成本,一个人日几百块,没有几个公司愿意花这笔钱。因此,最终的结论:不要盲目增加ip_conntrack_max。呼应了题目。
附:
1.关于GFP_XXX
GFP_ATOMIC:设置这个标识,在内核映射区域的紧急池分配,不成功则简单返回NULL,不释放其它内存,也就不kill进程,分配路径不睡眠。ip_conntrack结构体就是使用这个标识分配的(它大多数处于软中断路径)
GFP_KERNEL:设置这个标识,在内核映射区域分配,不成功则尝试释放可以释放的内存,尝试调用oom_killer,可以睡眠
GFP_HIGHUSER:设置这个标识,可以分配到所有的物理内存(排除很小一部分固定内存以及用于总线IO的内存,这个在x86上很明显,具体参见/proc/iomem获得详细物理内存映射信息)。一般而言,用户态进程所需的内存都使用这个标识来分配,尽量使用内核“很难”使用的高端内存(1G以后的物理内存,内核还要动态映射,这要操作页表),从而将前896M(32位架构)尽量留给内核使用
2.关于ip_conntrack的哈希
Linux的ip_conntrack使用了 jhash函数来进行哈希计算,关于该函数的实现可以参考下面这个网址:
http://burtleburtle.net/bob/hash/doobs.html
作者的解释很清晰

这篇关于不要盲目增加ip_conntrack_max-理解Linux内核内存的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/982609

相关文章

linux生产者,消费者问题

pthread_cond_wait() :用于阻塞当前线程,等待别的线程使用pthread_cond_signal()或pthread_cond_broadcast来唤醒它。 pthread_cond_wait() 必须与pthread_mutex 配套使用。pthread_cond_wait()函数一进入wait状态就会自动release mutex。当其他线程通过pthread

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

Linux 安装、配置Tomcat 的HTTPS

Linux 安装 、配置Tomcat的HTTPS 安装Tomcat 这里选择的是 tomcat 10.X ,需要Java 11及更高版本 Binary Distributions ->Core->选择 tar.gz包 下载、上传到内网服务器 /opt 目录tar -xzf 解压将解压的根目录改名为 tomat-10 并移动到 /opt 下, 形成个人习惯的路径 /opt/tomcat-10

RedHat运维-Linux文本操作基础-AWK进阶

你不用整理,跟着敲一遍,有个印象,然后把它保存到本地,以后要用再去看,如果有了新东西,你自个再添加。这是我参考牛客上的shell编程专项题,只不过换成了问答的方式而已。不用背,就算是我自己亲自敲,我现在好多也记不住。 1. 输出nowcoder.txt文件第5行的内容 2. 输出nowcoder.txt文件第6行的内容 3. 输出nowcoder.txt文件第7行的内容 4. 输出nowcode

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

【Linux进阶】UNIX体系结构分解——操作系统,内核,shell

1.什么是操作系统? 从严格意义上说,可将操作系统定义为一种软件,它控制计算机硬件资源,提供程序运行环境。我们通常将这种软件称为内核(kerel),因为它相对较小,而且位于环境的核心。  从广义上说,操作系统包括了内核和一些其他软件,这些软件使得计算机能够发挥作用,并使计算机具有自己的特生。这里所说的其他软件包括系统实用程序(system utility)、应用程序、shell以及公用函数库等

Windows/macOS/Linux 安装 Redis 和 Redis Desktop Manager 可视化工具

本文所有安装都在macOS High Sierra 10.13.4进行,Windows安装相对容易些,Linux安装与macOS类似,文中会做区分讲解 1. Redis安装 1.下载Redis https://redis.io/download 把下载的源码更名为redis-4.0.9-source,我喜欢跟maven、Tomcat放在一起,就放到/Users/zhan/Documents

回调的简单理解

之前一直不太明白回调的用法,现在简单的理解下 就按这张slidingmenu来说,主界面为Activity界面,而旁边的菜单为fragment界面。1.现在通过主界面的slidingmenu按钮来点开旁边的菜单功能并且选中”区县“选项(到这里就可以理解为A类调用B类里面的c方法)。2.通过触发“区县”的选项使得主界面跳转到“区县”相关的新闻列表界面中(到这里就可以理解为B类调用A类中的d方法

Linux系统稳定性的奥秘:探究其背后的机制与哲学

在计算机操作系统的世界里,Linux以其卓越的稳定性和可靠性著称,成为服务器、嵌入式系统乃至个人电脑用户的首选。那么,是什么造就了Linux如此之高的稳定性呢?本文将深入解析Linux系统稳定性的几个关键因素,揭示其背后的技术哲学与实践。 1. 开源协作的力量Linux是一个开源项目,意味着任何人都可以查看、修改和贡献其源代码。这种开放性吸引了全球成千上万的开发者参与到内核的维护与优化中,形成了

Linux 下的Vim命令宝贝

vim 命令详解(转自:https://www.cnblogs.com/usergaojie/p/4583796.html) vi: Visual Interface 可视化接口 vim: VI iMproved VI增强版 全屏编辑器,模式化编辑器 vim模式: 编辑模式(命令模式)输入模式末行模式 模式转换: 编辑-->输入: i: 在当前光标所在字符的前面,转为输入模式