每日一题9:Pandas-填充缺失值

2024-05-12 12:04

本文主要是介绍每日一题9:Pandas-填充缺失值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、每日一题

DataFrame products

-------------+--------+
| Column Name | Type   |
+-------------+--------+
| name        | object |
| quantity    | int    |
| price       | int    |
+-------------+--------+

编写一个解决方案,在 quantity 列中将缺失的值

编写一个解决方案,在 quantity 列中将缺失的值填充为 0

返回结果如下示例所示。

 

 解答:

import pandas as pddef fillMissingValues(products: pd.DataFrame) -> pd.DataFrame:products['quantity'] = products['quantity'].fillna(0)return products

题源:力扣 

二、总结

fillna() 是 Pandas 库中一个非常实用的方法,用于处理缺失数据(通常表示为 NaN 值)。这个方法可以以多种方式填充DataFrame或Series中的缺失值。以下是 fillna() 方法的一些基本用法和参数总结:

基本用法

1.填充固定值
df.fillna(value, inplace=False)
  • value: 用于替换缺失值的具体值。可以是标量(如0、'missing'等)、列表、字典或Series。
  • inplace: 默认为 False,意味着操作不会改变原数据,而是返回一个新的对象。如果设置为 True,则直接在原始数据上进行修改。
2.前向填充或后向填充
df.fillna(method='ffill' or 'bfill', limit=None, inplace=False)
  • method: 可以是 'ffill'(前向填充,使用前面的非空值填充缺失值)或 'bfill'(后向填充,使用后面的非空值填充缺失值)。
  • limit: 指定连续缺失值填充的最大数量。

参数说明

  • axis: 默认为 0,即按列进行填充。如果设置为 1,则沿着行进行操作。

  • limit: 当使用 ffillbfill 方法时,限制连续NaN值被填充的最大数量。

  • downcast: (可选)尝试向下转换数据类型以节省内存,例如从 float64 转换为 float32

实例

1.常值填充
df['column_name'].fillna(0, inplace=True)
2.使用列的均值填充:
df['column_name'].fillna(df['column_name'].mean(), inplace=True)
3.前向填充
df.fillna(method='ffill', inplace=True)

参考官方文档

这篇关于每日一题9:Pandas-填充缺失值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/982580

相关文章

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py

电脑开机提示krpt.dll丢失怎么解决? krpt.dll文件缺失的多种解决办法

《电脑开机提示krpt.dll丢失怎么解决?krpt.dll文件缺失的多种解决办法》krpt.dll是Windows操作系统中的一个动态链接库文件,它对于系统的正常运行起着重要的作用,本文将详细介绍... 在使用 Windows 操作系统的过程中,用户有时会遇到各种错误提示,其中“找不到 krpt.dll”

电脑报错cxcore100.dll丢失怎么办? 多种免费修复缺失的cxcore100.dll文件的技巧

《电脑报错cxcore100.dll丢失怎么办?多种免费修复缺失的cxcore100.dll文件的技巧》你是否也遇到过“由于找不到cxcore100.dll,无法继续执行代码,重新安装程序可能会解... 当电脑报错“cxcore100.dll未找到”时,这通常意味着系统无法找到或加载这编程个必要的动态链接库

SpringBoot自定义注解如何解决公共字段填充问题

《SpringBoot自定义注解如何解决公共字段填充问题》本文介绍了在系统开发中,如何使用AOP切面编程实现公共字段自动填充的功能,从而简化代码,通过自定义注解和切面类,可以统一处理创建时间和修改时间... 目录1.1 问题分析1.2 实现思路1.3 代码开发1.3.1 步骤一1.3.2 步骤二1.3.3

解读Pandas和Polars的区别及说明

《解读Pandas和Polars的区别及说明》Pandas和Polars是Python中用于数据处理的两个库,Pandas适用于中小规模数据的快速原型开发和复杂数据操作,而Polars则专注于高效数据... 目录Pandas vs Polars 对比表使用场景对比Pandas 的使用场景Polars 的使用

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

Pandas中多重索引技巧的实现

《Pandas中多重索引技巧的实现》Pandas中的多重索引功能强大,适用于处理多维数据,本文就来介绍一下多重索引技巧,具有一定的参考价值,感兴趣的可以了解一下... 目录1.多重索引概述2.多重索引的基本操作2.1 选择和切片多重索引2.2 交换层级与重设索引3.多重索引的高级操作3.1 多重索引的分组聚

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编