每日一题9:Pandas-填充缺失值

2024-05-12 12:04

本文主要是介绍每日一题9:Pandas-填充缺失值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、每日一题

DataFrame products

-------------+--------+
| Column Name | Type   |
+-------------+--------+
| name        | object |
| quantity    | int    |
| price       | int    |
+-------------+--------+

编写一个解决方案,在 quantity 列中将缺失的值

编写一个解决方案,在 quantity 列中将缺失的值填充为 0

返回结果如下示例所示。

 

 解答:

import pandas as pddef fillMissingValues(products: pd.DataFrame) -> pd.DataFrame:products['quantity'] = products['quantity'].fillna(0)return products

题源:力扣 

二、总结

fillna() 是 Pandas 库中一个非常实用的方法,用于处理缺失数据(通常表示为 NaN 值)。这个方法可以以多种方式填充DataFrame或Series中的缺失值。以下是 fillna() 方法的一些基本用法和参数总结:

基本用法

1.填充固定值
df.fillna(value, inplace=False)
  • value: 用于替换缺失值的具体值。可以是标量(如0、'missing'等)、列表、字典或Series。
  • inplace: 默认为 False,意味着操作不会改变原数据,而是返回一个新的对象。如果设置为 True,则直接在原始数据上进行修改。
2.前向填充或后向填充
df.fillna(method='ffill' or 'bfill', limit=None, inplace=False)
  • method: 可以是 'ffill'(前向填充,使用前面的非空值填充缺失值)或 'bfill'(后向填充,使用后面的非空值填充缺失值)。
  • limit: 指定连续缺失值填充的最大数量。

参数说明

  • axis: 默认为 0,即按列进行填充。如果设置为 1,则沿着行进行操作。

  • limit: 当使用 ffillbfill 方法时,限制连续NaN值被填充的最大数量。

  • downcast: (可选)尝试向下转换数据类型以节省内存,例如从 float64 转换为 float32

实例

1.常值填充
df['column_name'].fillna(0, inplace=True)
2.使用列的均值填充:
df['column_name'].fillna(df['column_name'].mean(), inplace=True)
3.前向填充
df.fillna(method='ffill', inplace=True)

参考官方文档

这篇关于每日一题9:Pandas-填充缺失值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/982580

相关文章

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

基于Java实现模板填充Word

《基于Java实现模板填充Word》这篇文章主要为大家详细介绍了如何用Java实现按产品经理提供的Word模板填充数据,并以word或pdf形式导出,有需要的小伙伴可以参考一下... Java实现按模板填充wor编程d本文讲解的需求是:我们需要把数据库中的某些数据按照 产品经理提供的 word模板,把数据

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟)

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟) 题目描述 给定一个链表,链表中的每个节点代表一个整数。链表中的整数由 0 分隔开,表示不同的区间。链表的开始和结束节点的值都为 0。任务是将每两个相邻的 0 之间的所有节点合并成一个节点,新节点的值为原区间内所有节点值的和。合并后,需要移除所有的 0,并返回修改后的链表头节点。 思路分析 初始化:创建一个虚拟头节点

每日一题|牛客竞赛|四舍五入|字符串+贪心+模拟

每日一题|四舍五入 四舍五入 心有猛虎,细嗅蔷薇。你好朋友,这里是锅巴的C\C++学习笔记,常言道,不积跬步无以至千里,希望有朝一日我们积累的滴水可以击穿顽石。 四舍五入 题目: 牛牛发明了一种新的四舍五入应用于整数,对个位四舍五入,规则如下 12345->12350 12399->12400 输入描述: 输入一个整数n(0<=n<=109 ) 输出描述: 输出一个整数

每日一练7:简写单词(含链接)

1.链接 简写单词_牛客题霸_牛客网 2.题目 3.代码1(错误经验) #include <iostream>#include <string>using namespace std;int main() {string s;string ret;int count = 0;while(cin >> s)for(auto a : s){if(count == 0){if( a <=

【每日刷题】Day113

【每日刷题】Day113 🥕个人主页:开敲🍉 🔥所属专栏:每日刷题🍍 🌼文章目录🌼 1. 91. 解码方法 - 力扣(LeetCode) 2. LCR 098. 不同路径 - 力扣(LeetCode) 3. 63. 不同路径 II - 力扣(LeetCode) 1. 91. 解码方法 - 力扣(LeetCode) //思路:动态规划。 cl

【Python从入门到进阶】64、Pandas如何实现数据的Concat合并

接上篇《63.Pandas如何实现数据的Merge》 上一篇我们学习了Pandas如何实现数据的Merge,本篇我们来继续学习Pandas如何实现数据的Concat合并。 一、引言 在数据处理过程中,经常需要将多个数据集合并为一个统一的数据集,以便进行进一步的分析或建模。这种需求在多种场景下都非常常见,比如合并不同来源的数据集以获取更全面的信息、将时间序列数据按时间顺序拼接起来以观察长期趋势等

渐变颜色填充

GradientFill函数可以对特定的矩形区域或者三角形区域进行渐变颜色的填充。我们先来看看GradientFill函数到底长得什么样子,帅不帅。 [cpp]  view plain copy print ? BOOL GradientFill(     _In_  HDC hdc,     _In_  PTRIVERTEX pVertex,     _In_  ULONG