交易系统订单存在的意义

2024-05-12 11:48

本文主要是介绍交易系统订单存在的意义,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

交易系统订单存在的意义

幂等性接口的目的是最终一致性;

订单存在的意义,无论是在程序员世界里还是现实世界里,订单存在的意义是为了保证出货与计费的一致性存在的,其实说到最后,就是需要订单和订单状态来实现接口的幂等能力,也可以叫做业务侧的幂等能力(另者说,就是保证终态与过程态的一致性);另外,需要实现接口的幂等能力,也类似的需要用到REQUESTID这种像ORDERID(订单号)一样的标记ID,这样是幂等接口的必须满足的,说到这个,想到BAT这样的大公司常问消息队列消息幂等性的实现,这其实也就是根本实现手段;
所以如果,有一个计费场景,没有出货的概念,或者已经模糊了此概念的,需要谨慎考虑是否使用订单,不能够依样画葫芦,就成了画蛇添足;
另外,订单与凭证的关系,斯认为,订单是凭证的一种形式,凭证不一定都像订单一样,如果领导一张证明下来,证明上写“给某某某账户充1000W”,这也可以认为是凭证的一种;大胆的概括,希望可以给自己记录下来,也给看到的同学一个另类的思考;

凭证,就是执行一件事情的证明和依据,订单的状态修改,就需要这些依据才可以进行状态修改;

这篇关于交易系统订单存在的意义的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/982543

相关文章

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Java中实现订单超时自动取消功能(最新推荐)

《Java中实现订单超时自动取消功能(最新推荐)》本文介绍了Java中实现订单超时自动取消功能的几种方法,包括定时任务、JDK延迟队列、Redis过期监听、Redisson分布式延迟队列、Rocket... 目录1、定时任务2、JDK延迟队列 DelayQueue(1)定义实现Delayed接口的实体类 (

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

Springboot使用RabbitMQ实现关闭超时订单(示例详解)

《Springboot使用RabbitMQ实现关闭超时订单(示例详解)》介绍了如何在SpringBoot项目中使用RabbitMQ实现订单的延时处理和超时关闭,通过配置RabbitMQ的交换机、队列和... 目录1.maven中引入rabbitmq的依赖:2.application.yml中进行rabbit

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

easyui同时验证账户格式和ajax是否存在

accountName: {validator: function (value, param) {if (!/^[a-zA-Z][a-zA-Z0-9_]{3,15}$/i.test(value)) {$.fn.validatebox.defaults.rules.accountName.message = '账户名称不合法(字母开头,允许4-16字节,允许字母数字下划线)';return fal

【408DS算法题】039进阶-判断图中路径是否存在

Index 题目分析实现总结 题目 对于给定的图G,设计函数实现判断G中是否含有从start结点到stop结点的路径。 分析实现 对于图的路径的存在性判断,有两种做法:(本文的实现均基于邻接矩阵存储方式的图) 1.图的BFS BFS的思路相对比较直观——从起始结点出发进行层次遍历,遍历过程中遇到结点i就表示存在路径start->i,故只需判断每个结点i是否就是stop

UVM:callback机制的意义和用法

1. 作用         Callback机制在UVM验证平台,最大用处就是为了提高验证平台的可重用性。在不创建复杂的OOP层次结构前提下,针对组件中的某些行为,在其之前后之后,内置一些函数,增加或者修改UVM组件的操作,增加新的功能,从而实现一个环境多个用例。此外还可以通过Callback机制构建异常的测试用例。 2. 使用步骤         (1)在UVM组件中内嵌callback函

LeetCode题练习与总结:存在重复元素Ⅱ--219

一、题目描述 给你一个整数数组 nums 和一个整数 k ,判断数组中是否存在两个 不同的索引 i 和 j ,满足 nums[i] == nums[j] 且 abs(i - j) <= k 。如果存在,返回 true ;否则,返回 false 。 示例 1: 输入:nums = [1,2,3,1], k = 3输出:true 示例 2: 输入:nums = [1,0,1,1], k