#include《初见C语言之顺序表的增删查改》

2024-05-12 09:20

本文主要是介绍#include《初见C语言之顺序表的增删查改》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、顺序表

二、顺序表的分类

三、顺序表的实现前期准备

第一步,确定需要的文件

第二步,开始分析

四、顺序表的实现

1.初始化

2.销毁

3.申请空间

4.打印

5.尾插

6.头插

7.尾删

8.头删

9.指定位置之前插入

10.指定位置之前删除

11.查找

五、注意的问题

1.空指针(常常作为野指针)

2.申请空间(忘记)

3.头插、头删、指定位置之前的插入的下标和结束条件

4.查找相等的时候要用

5.记得要传地址,不是传值!!!


【注】要讲顺序表就要知道什么是线性表以及其中的概念,就需要去系统的对数据结构进行学习,本篇这要是讲解如何用c语言实现顺序表的增删查改

一、顺序表

【提前了解】

顺序表是线性表的一种,线性表的物理结构不一定是线性和逻辑结构一定是线性的

顺序表物理和逻辑结构都是线性的

【说明】

顺序表底层就是数组,下面我们做个比喻

数组(快餐)顺序表(大饭店)
洋芋丝豪华金丝

通过这个比喻,可以看出顺序表就是数组的一个包装。


二、顺序表的分类

顺序表又分为静态顺序表和动态顺序表

静态顺序表动态顺序表
优点

固定空间

灵活多变
缺点

1.给多了浪费空间

2.给少了不够用

容易导致内存紧张

(需释放空间)

 静态顺序表

//#define Emax 100//定义一个最大值
//
//struct SqeList
//{
//    int arr[Emax];//数组
//    int size;//有效数据
//};

 动态顺序表

typedef int Datatype;//定义一个数据类型,
typedef struct SqeList
{
    Datatype* arr;//数组
    int size;//有效数据
    int capacity;//空间大小
}SL;//结构体变量名

【观察】

  1. 动态顺序表笔静态多一个空间大小的变化,所以我们一般选用动态顺序表来实现顺序表的增删查改。 
  2. typedef int Datatype;//定义一个数据类型,将来可以随时改要增删查改的数据类型

三、顺序表的实现前期准备

不管是快餐还是大饭店,都是要提前准备好

第一步,确定需要的文件

这里需要三个文件

第一个是测试文件,每次写完一个功能就要测试,防止代码写完,处处报错的崩溃感

第二个是顺序表的功能实现文件,在在测试文件调用

第三个事顺序表的头文件,主要是把函数声明和库函数的放在这个文件(也是整个代码的目录,方便查阅代码的功能) 

第二步,开始分析

顺序的增删查改说白了就是数组的增删查改,只需要在数组的基础上初始化和销毁

主要实现的功能

//初始化
void SLorigin(SL* ps);
//销毁
void SLdestory(SL* ps);

//打印
void Print(SL ps);
//尾插
void SLbackinsert(SL* ps, Datatype x);
//头插
void SLfrontinsert(SL* ps, Datatype x);
//尾删
void SLbackdelete(SL* ps);
//头删
void SLforntdelete(SL* ps);
//指定位置之前插入
void SLbeforeinsert(SL* ps,int pot,Datatype x);
//指定位置之前删除
void SLbeforedelete(SL* ps, int pot);
//查找
int SLFind(SL*ps,Datatype x);


四、顺序表的实现

1.初始化

以下是头文件(类似) 

//初始化
void SLorigin(SL* ps);

SL是结构体的变量名,要传地址才能使用,所以用指针 ,之后的都是类似的

这一步就是大饭店开始做宴席时,要把锅碗瓢盆擦干净——(要动态顺序表的arr,size,capacity不能有其他东西)

代码实现:

void SLorigin(SL* ps)
{ps->arr = NULL;ps->capacity = ps->size = 0;
}

 调试展示:

 画图展示:

2.销毁

//销毁
void SLdestory(SL* ps);

这一步就是餐馆里吃完饭后要把碗筷收回洗干净备用——(将顺序表的内存收回)

代码实现:

//销毁
void SLdestory(SL* ps)
{if (ps->arr != NULL){free(ps->arr);}ps->arr = NULL;ps->capacity = ps->size = 0;
}

  调试展示:

画图展示:

 

3.申请空间

这个就是餐馆的后厨,需要再一个地方把菜炒出来——(顺序表的空间)

这一步我们直接封装成函数,要用时直接调用(谁都可以在这里炒菜)

代码实现:

//申请空间
void SLCheckspace(SL*ps)
{if (ps->size == ps->capacity){int	Newcapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;Datatype* tmp = (Datatype*)realloc(ps->arr, sizeof(Datatype) * Newcapacity);if (tmp == NULL){perror("realloc fail");return 1;}ps->arr = tmp;ps->capacity = Newcapacity;}
}

这里的增容使用的是realloc,realloc可以动态的增容,让空间不够用时会按照原来的两倍增容 

这样的好处是:既不会打断系统的操作,也不会空间紧张。

调试展示:

4.打印

将菜的成品端上餐桌

//打印
void Print(SL ps);

代码实现:

//打印
void Print(SL ps)
{for (int i = 0; i < ps.size; i++){printf("%d ", ps.arr[i]);}printf("\n");
}

 画图展示:

5.尾插

宴席上从最后一桌开始上菜——尾插顾名思义就是从数组的最末端开始插入

//尾插
void SLbackinsert(SL* ps, Datatype x);

代码实现:

//尾插
void SLbackinsert(SL* ps, Datatype x)
{assert(ps);SLCheckspace(ps);ps->arr[ps->size] = x;++ps->size;
}

调试展示:

画图展示:

6.头插

从第一桌开始端菜——从数组下标为0的地方插入

//头插
void SLfrontinsert(SL* ps, Datatype x);

代码实现:

//头插
void SLfrontinsert(SL* ps, Datatype x)
{assert(ps);SLCheckspace(ps);for (int i = ps->size; i>0; i--){ps->arr[i] = ps->arr[i - 1];}ps->arr[0] = x;++ps->size;
}

调试展示:

画图展示:

7.尾删

从餐桌的最后一桌开始收

//尾删
void SLbackdelete(SL* ps);

代码实现:

//尾删
void SLbackdelete(SL* ps)
{assert(ps);assert(ps->size);--ps->size;
}

 运行结果:

画图展示:

8.头删

从第一桌开始收

//头删
void SLforntdelete(SL* ps); 

代码实现:

//头删
void SLforntdelete(SL* ps)
{assert(ps);assert(ps->size);for (int i = 0; i<ps->size; i++){ps->arr[i] = ps->arr[i + 1];}--ps->size;
}

运行结果:

画图演示:

 

9.指定位置之前插入

谁点的菜上谁桌

//指定位置之前插入
void SLbeforeinsert(SL* ps,int pot,Datatype x);

代码实现:

//指定位置之前插入
void SLbeforeinsert(SL* ps, int pot, Datatype x)
{assert(ps);assert(pot >= 0 && pot <= ps->size);SLCheckspace(ps);for (int i = ps->size; i>pot; i--){ps->arr[i] = ps->arr[i-1];}ps->arr[pot] = x;ps->size++;
}

 运行结果:

 画图展示:

10.指定位置之前删除

谁投诉退谁的菜

//指定位置之前删除
void SLbeforedelete(SL* ps, int pot);

代码实现:

//指定位置之前删除
void SLbeforedelete(SL* ps, int pot)
{assert(ps);assert(pot >= 0 && pot < ps->size);SLCheckspace(ps);for (int i =pot ; i<ps->size-1; i++){ps->arr[i] = ps->arr[i + 1];}--ps->size;
}

运行结果:

 画图展示:


11.查找

查账本

//查找
int SLFind(SL*ps,Datatype x);

 代码实现:

//查找
int SLFind(SL* ps,Datatype x)
{for (int i = 0; i < ps->size; i++){if (ps->arr[i] == x){return i;}}return -1;
}

运行结果:


五、注意的问题

1.空指针(常常作为野指针)

ps->arr=NULL;

2.申请空间(忘记)

if()

3.头插、头删、指定位置之前的插入的下标和结束条件

for()

4.查找相等的时候要用

(==)

5.记得要传地址,不是传值!!!

这篇关于#include《初见C语言之顺序表的增删查改》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/982226

相关文章

C语言中联合体union的使用

本文编辑整理自: http://bbs.chinaunix.net/forum.php?mod=viewthread&tid=179471 一、前言 “联合体”(union)与“结构体”(struct)有一些相似之处。但两者有本质上的不同。在结构体中,各成员有各自的内存空间, 一个结构变量的总长度是各成员长度之和。而在“联合”中,各成员共享一段内存空间, 一个联合变量

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

人工和AI大语言模型成本对比 ai语音模型

这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。 但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声学模型概率高,又符合表达

C语言 将“China”译成密码

将“China”译成密码,密码规律是:用原来的字母后面的第4个字母代替原来的字母。例如,字母“A”后面的第4个字母是“E”,用“E”代替“A”。因此,“China”应译为“Glmre”。编译程序用付赋初值的方法使c1,c2,c3,c4,c5这五个变量的值分别为“C”,“h”,“i”,“n”,“a”,经过运算,使c1,c2,c3,c4,c5分别变成“G”,“l”,“m”,“r”,“e”。分别用put

【数据结构】线性表:顺序表

文章目录 1. 线性表2. 顺序表2.1 概念及结构2.2 接口实现2.3 顺序表的问题及思考 1. 线性表 线性表是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列、字符串… 线性表在逻辑上是线性结构,也就说是连续的一条直线。但是在物理结构上并不一定是连续的,线性表在物理上存储时,通常以数组和链式结构的形式

C语言入门系列:探秘二级指针与多级指针的奇妙世界

文章目录 一,指针的回忆杀1,指针的概念2,指针的声明和赋值3,指针的使用3.1 直接给指针变量赋值3.2 通过*运算符读写指针指向的内存3.2.1 读3.2.2 写 二,二级指针详解1,定义2,示例说明3,二级指针与一级指针、普通变量的关系3.1,与一级指针的关系3.2,与普通变量的关系,示例说明 4,二级指针的常见用途5,二级指针扩展到多级指针 小结 C语言的学习之旅中,二级

剑指offer(C++)--翻转单词顺序列

题目 牛客最近来了一个新员工Fish,每天早晨总是会拿着一本英文杂志,写些句子在本子上。同事Cat对Fish写的内容颇感兴趣,有一天他向Fish借来翻看,但却读不懂它的意思。例如,“student. a am I”。后来才意识到,这家伙原来把句子单词的顺序翻转了,正确的句子应该是“I am a student.”。Cat对一一的翻转这些单词顺序可不在行,你能帮助他么? class S

【LinuxC语言】select轮询

文章目录 前言select函数详解selectfd_set类型一个小问题select函数使用步骤改进服务器代码select服务器示例代码 总结 前言 在Linux C语言编程中,我们经常需要处理多个I/O操作。然而,如果我们为每个I/O操作创建一个线程,那么当I/O操作数量增加时,线程管理将变得复杂且效率低下。这就是我们需要select轮询的地方。select是一种高效的I/

拓扑排序——C语言

拓扑排序(Topological Sorting)是一种用于有向无环图(DAG)的排序算法,其输出是图中所有顶点的线性排序,使得对于每条有向边 (u, v),顶点 u 在 v 之前出现。拓扑排序确定了项目网络图中的起始事件和终止事件,也就是顶点的执行顺序。         因为是有向无环图,所以拓扑排序的作用其实就是把先发生的排序在前面,后发生的排序到后面。 例如现在我们有一个

OC和 C语言中的const

const与宏对比 1.都是在其他的地方不可以改变 2.一个地方改了其他的地方都会改变。 而且宏定义的缺陷是, 是它会不断的开辟临时变量的存储空间 使用const的话 是都去使用同一的一份空间,使用同一个对象。 加const 之后变量还是全局的,只不过变为全局常量。 如果此时改变量不想被被类外面访问的话,可以加上static关键字, 3.下次想要定义一些宏的时候分