模拟集成电路(3)----单级放大器(共源极)

2024-05-12 04:44

本文主要是介绍模拟集成电路(3)----单级放大器(共源极),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

模拟集成电路(3)----单级放大器(共源极)

放大是模拟电路的基本功能

  • 大多数自然模拟信号太小而无法处理
  • 需要足够的信噪比

理想的放大器

  • 线性:无限的幅度和频率范围

  • 输入阻抗无限大

  • 输出阻抗无限小

共源放大器

共源放大器就是将源极接AC ground。

image-20240505210435115

一般我们对三点进行分析:

  1. 直流摆幅有多大(饱和区)
  2. 小信号的增益
  3. 输入输出的阻抗

电阻负载

image-20240505210853242
大信号分析
  • V i n < V T H , c u t o f f V_{in}<V_{TH},\mathrm{~cut~off} Vin<VTH, cut off

V o u t = V D D V_{out}=V_{DD} Vout=VDD

  • V i n − V T H ≤ V o u t , saturation V_{in}-V_{TH}\leq V_{out,}\text{saturation} VinVTHVout,saturation(一般只考虑饱和区)

V o u t = V D D − I d ⋅ R D = V D D − μ n C o x 2 W L ( V i n − V T H ) 2 ⋅ R D \begin{aligned}&V_{out}=V_{DD}-I_{d}\cdot R_{D}\\&=V_{DD}-\frac{\mu_{n}C_{ox}}{2}\frac{W}{L}(V_{in}-V_{TH})^{2}\cdot R_{D}\end{aligned} Vout=VDDIdRD=VDD2μnCoxLW(VinVTH)2RD

  • V i n − V T H > V o u t , triode V_{in}-V_{TH}>V_{out,}\text{triode} VinVTH>Vout,triode
小信号增益

大信号的斜率就是小信号的增益
V o u t = V D D − μ n C o x 2 W L ( V i n − V T H ) 2 ⋅ R D V_{out}=V_{DD}-\frac{\mu_{n}C_{ox}}{2}\frac{W}{L}\left(V_{in}-V_{TH}\right)^{2}\cdot R_{D} Vout=VDD2μnCoxLW(VinVTH)2RD

A v = ∂ V o u t ∂ V i n = − μ n C o x W L ( V i n − V T H ) ⋅ R D A_{v}=\frac{\partial V_{out}}{\partial V_{in}}=-\boxed{\mu_{n}C_{ox}\frac{W}{L}(V_{in}-V_{TH})}\cdot R_{D} Av=VinVout=μnCoxLW(VinVTH)RD

框出的部分即为跨导
A v = ∂ V o u t ∂ V i n = − g m ⋅ R D A_v=\frac{\partial V_{out}}{\partial V_{in}}=-\boxed{g_m}\cdot R_D Av=VinVout=gmRD
发现,不同的 V i n V_{in} Vin的值会影响增益的值,

  • 小信号等效电路

image-20240505212431271
{ ν o u t = − i d R D i d = g m ν i n \begin{cases} \begin{aligned}&\nu_{out}=-i_{d}R_{D}\\&i_{d}=g_{m}\nu_{in}\end{aligned} \end{cases} {νout=idRDid=gmνin

A ν = ν o u t ν i n = − g m R D A_{\nu}=\frac{\nu_{out}}{\nu_{in}}=-g_{m}R_{D} Aν=νinνout=gmRD

  • 考虑沟道长度调制效应

image-20240505212804470

{ ν o u t = − i d ( R D ∥ r o ) i d = g m ν i n \begin{cases} \begin{aligned}&\nu_{out}=-i_{d}(R_{D}\parallel r_{o})\\&i_{d}=g_{m}\nu_{in}\end{aligned} \end{cases} {νout=id(RDro)id=gmνin
根据常识有 R D ≪ r o R_D \ll r_o RDro
A ν = − g m ⋅ ( R D ∥ r o ) ≈ − g m ⋅ R D \begin{aligned}A_{\nu}&=-g_{m}\cdot(R_{D}\parallel r_{o})\\&\approx-g_{m}\cdot R_{D}\end{aligned} Aν=gm(RDro)gmRD

输入输出阻抗

r i n = ν i n i i n = ∞ r_{in}=\frac{\nu_{in}}{i_{in}}=\infty rin=iinνin=

r o u t = r o ∥ R D ≈ R D r_{out}=r_{o}\parallel R_{D}\approx R_{D} rout=roRDRD

image-20240505214020780

V D S = V i n 1 − V T H V_{\mathrm{DS}}=V_{\mathrm{in}1}-V_{\mathrm{TH}} VDS=Vin1VTH

V i n 1 − V T H = V D D − μ n C o x 2 W L ( V i n 1 − V T H ) 2 ⋅ R D V_{\mathrm{in1}}-V_{\mathrm{TH}}=V_{\mathrm{DD}}-\frac{\mu_{\mathrm{n}}C_{\mathrm{ox}}}{2}\frac{W}{L}(V_{\mathrm{in1}}-V_{\mathrm{TH}})^{2}\cdot R_{\mathrm{D}} Vin1VTH=VDD2μnCoxLW(Vin1VTH)2RD

可以得到 V i n 1 V_{in1} Vin1 R D R_D RD的一个函数。

R D R_D RD越大会导致 V i n 1 V_{in1} Vin1越小

image-20240505214425675

二极管接法负载

image-20240505214531645

image-20240505214452023

在M1和M2的电流是一样的,于是我们可以列出如下等式:

image-20240505214723084

1 2 μ n C o x ( W L ) 1 ( V i n − V T H 1 ) 2 = 1 2 μ n C o x ( W L ) 2 ( V D D − V o u t − V T H 2 ) 2 \begin{aligned}&\frac{1}{2}\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{1}\left(V_{in}-V_{TH1}\right)^{2}\\&=\frac{1}{2}\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{2}\left(V_{DD}-V_{out}-V_{TH2}\right)^{2}\end{aligned} 21μnCox(LW)1(VinVTH1)2=21μnCox(LW)2(VDDVoutVTH2)2

( W L ) 1 ( V i n − V T H 1 ) = ( W L ) 2 ( V D D − V o u t − V T H 2 ) \sqrt{\left(\frac{W}{L}\right)_{1}}(V_{in}-V_{TH1})=\sqrt{\left(\frac{W}{L}\right)_{2}}(V_{DD}-V_{out}-V_{TH2}) (LW)1 (VinVTH1)=(LW)2 (VDDVoutVTH2)

可得 V i n V_{in} Vin V o u t V_{out} Vout几乎是一个线性关系,如果两个晶体管的 V T H V_{TH} VTH不变,那么可以认作是线性关系。

image-20240505215109485

由于有电容的存在,所以 V o u t V_{out} Vout并不是直接变大。

大信号分析

image-20240505220044467
小信号增益

( W L ) 1 ( V i n − V T H 1 ) = ( W L ) 2 ( V D D − V o u t − V T H 2 ) \sqrt{\left(\frac{W}{L}\right)_{1}}(V_{in}-V_{TH1})=\sqrt{\left(\frac{W}{L}\right)_{2}}(V_{DD}-V_{out}-V_{TH2}) (LW)1 (VinVTH1)=(LW)2 (VDDVoutVTH2)

( W L ) 1 = ( W L ) 2 ( − ∂ V o u t ∂ V i n − ∂ V T H 2 ∂ V i n ) \sqrt{\left(\frac{W}{L}\right)_1}=\sqrt{\left(\frac{W}{L}\right)_2}(-\frac{\partial V_{out}}{\partial V_{in}}-\boxed{ \frac{\partial V_{TH2}}{\partial V_{in}}}) (LW)1 =(LW)2 (VinVoutVinVTH2)

框住的为 M 2 M_2 M2的体效应
∂ V T H 2 ∂ V i n = ∂ V T H 2 ∂ V o u t ⋅ ∂ V o u t ∂ V i n = η ⋅ ∂ V o u t ∂ V i n \frac{\partial V_{TH2}}{\partial V_{in}}=\frac{\partial V_{TH2}}{\partial V_{out}}\cdot\frac{\partial V_{out}}{\partial V_{in}}=\eta\cdot\frac{\partial V_{out}}{\partial V_{in}} VinVTH2=VoutVTH2VinVout=ηVinVout
得到增益:
A ν = ∂ V o u t ∂ V i n = − ( W / L ) 1 ( W / L ) 2 ⋅ 1 1 + η A_{\nu}=\frac{\partial V_{out}}{\partial V_{in}}=-\sqrt{\frac{\left(W/L\right)_{1}}{\left(W/L\right)_{2}}}\cdot\frac{1}{1+\eta} Aν=VinVout=(W/L)2(W/L)1 1+η1

小信号模型

小信号模型增益
image-20240505221313667

i x = v x / r o + g m v 1 v 1 = v x } → r e q = v x i x = r o ∥ 1 g m ≈ 1 g m \begin{aligned}&i_{x}=v_{x}/r_{o}+g_{m}v_{1}\\&v_{1}=v_{x}\end{aligned}\biggr\}\to r_{eq}=\frac{v_{x}}{i_{x}}=r_{o}\parallel\frac{1}{g_{m}}\approx\frac{1}{g_{m}} ix=vx/ro+gmv1v1=vx}req=ixvx=rogm1gm1

  • 考虑体效应
image-20240505222131635

i x = v x r o + ( g m 2 + g m b 2 ) v x i_x=\frac{v_x}{r_o}+(g_{m2}+g_{mb2})v_x ix=rovx+(gm2+gmb2)vx

r e q = v x i x = r o ∥ 1 g m 2 + g m b 2 ≈ 1 g m 2 + g m b 2 = 1 ( 1 + η ) g m 2 r_{eq}=\frac{v_{x}}{i_{x}}=r_{o}\parallel\frac{1}{g_{m2}+g_{mb2}}\approx\frac{1}{g_{m2}+g_{mb2}}=\frac{1}{(1+\eta)g_{m2}} req=ixvx=rogm2+gmb21gm2+gmb21=(1+η)gm21

  • 用小信号的方法计算增益
image-20240505222816333

A v = − g m 1 ⋅ ( r e q ∥ r o 1 ) ≈ − g m 1 ⋅ r e q A_v=-g_{m1}\cdot(r_{eq}\parallel r_{o1})\approx-g_{m1}\cdot r_{eq} Av=gm1(reqro1)gm1req

A v = − g m 1 g m 2 ⋅ 1 1 + η A_{v}=-\frac{g_{m1}}{g_{m2}}\cdot\frac{1}{1+\eta} Av=gm2gm11+η1

对于PMOS

image-20240505223238037

A v = − g m 1 g m 2 A v = − μ n ( W / L ) 1 μ p ( W / L ) 2 A_{v}=-\frac{g_{m1}}{g_{m2}}\\A_{v}=-\sqrt{\frac{\mu_{n}(W/L)_{1}}{\mu_{p}(W/L)_{2}}} Av=gm2gm1Av=μp(W/L)2μn(W/L)1

输入输出电阻
image-20240505223437810

r i n = ∞ r_{in}=\infty rin=

r o u t = r o 1 ∥ r o 2 ∥ 1 g m 2 ( 1 + η ) ≈ 1 g m 2 ( 1 + η ) \begin{aligned}r_{out}&=r_{o1}\parallel r_{o2}\parallel\frac{1}{g_{m2}(1+\eta)}\\&\approx\frac{1}{g_{m2}(1+\eta)}\end{aligned} rout=ro1ro2gm2(1+η)1gm2(1+η)1

image-20240505223446875

r i n = ∞ r_{in}=\infty rin=

r o u t = r o 1 ∥ r o 2 ∥ 1 g m 2 ≈ 1 g m 2 \begin{aligned}r_{out}&=r_{o1}\parallel r_{o2}\parallel\frac{1}{g_{m2}}\\&\approx\frac{1}{g_{m2}}\end{aligned} rout=ro1ro2gm21gm21

电流源负载

一般我们的电流源会用mos管实现,例如pmos

如下是pmos作电流源负载:

image-20240511213344161

M1小信号模型如下:

image-20240511214036993

所以总的小信号模型就是在 r o 1 r_{o1} ro1并上 r o 2 r_{o2} ro2
A v = − g m ⋅ ( r o 1 ∥ r o 2 ) r i n = ∞ r o u t = r o 1 ∥ r o 2 A_{v}=-g_{m}\cdot(r_{o1}\parallel r_{o2})\\r_{in}=\infty\quad r_{out}=r_{o1}\parallel r_{o2} Av=gm(ro1ro2)rin=rout=ro1ro2

电流源负载和电阻负载进行对比:

image-20240511213613958

所以电流源负载可实现小电流实现大增益。

通用的CS分析方法

image-20240511215013125

v i n → i d = g m v i n v → i → i d → v o u t = − i d r o u t i → v ν o u t v_{in}\xrightarrow{i_{d}=g_{m}v_{in}}_{v\to i}\to i_{d}\xrightarrow{v_{out}=-i_{d}r_{out}}_{i\to v}\nu_{out} vinid=gmvin viidvout=idrout ivνout

v o u t = − i d r o u t = − g m v i n r o u t A v = v o u t / v i n = − g m r o u t v_{out}=-i_{d}r_{out}=-g_{m}v_{in}r_{out}\\A_{v}=v_{out}/v_{in}=-g_{m}r_{out} vout=idrout=gmvinroutAv=vout/vin=gmrout

r o u t = r O ∥ r L o a d r_{out}=r_{O}\parallel r_{Load} rout=rOrLoad

image-20240511215323443

有源负载的共源极

image-20240511215411207
v o u t v i n = − ( g m l + g m 2 ) ( r o l ∥ r o 2 ) \frac{v_{\mathrm{out}}}{v_{\mathrm{in}}}=-(g_{\mathrm{ml}}+g_{\mathrm{m2}})(r_{\mathrm{ol}}\parallel r_{\mathrm{o2}}) vinvout=(gml+gm2)(rolro2)

带源极负反馈的共源级

image-20240511220028807

A s s u m i n g λ = γ = 0 Assuming \lambda=\gamma=0 Assumingλ=γ=0
I d = 1 2 μ n C o x W L ( V g s − V T H ) 2 = 1 2 μ n C o x W L ( V i n − R S I d − V T H ) 2 \begin{aligned} I_{d}& =\frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}\big(V_{gs}-V_{TH}\big)^{2} \\ &=\frac12\mu_nC_{ox}\frac WL(V_{in}-R_SI_d-V_{TH})^2 \end{aligned} Id=21μnCoxLW(VgsVTH)2=21μnCoxLW(VinRSIdVTH)2
等效跨导如下:
G m = ∂ I d ∂ V i n G_m=\frac{\partial I_d}{\partial V_{in}} Gm=VinId

G m = ∂ I d ∂ V i n = μ n C o x W L ( V i n − R S I d − V T H ) ( 1 − R S G m ) G_{m}=\frac{\partial I_{d}}{\partial V_{in}}=\boxed{\mu_{n}C_{ox}\frac{W}{L}(V_{in}-R_{S}I_{d}-V_{TH})}(1-R_{S}G_{m}) Gm=VinId=μnCoxLW(VinRSIdVTH)(1RSGm)

框住的部分是 g m g_m gm
G m = g m ( 1 − R S G m ) ⟶ G m = g m 1 + g m R S G_{m}=g_{m}(1-R_{S}G_{m})\longrightarrow \quad G_{m}=\frac{g_{m}}{1+g_{m}R_{S}} Gm=gm(1RSGm)Gm=1+gmRSgm

A ν = − G m R D = − g m R D 1 + g m R S A_{\nu}=-G_{m}R_{D}=-\frac{g_{m}R_{D}}{1+g_{m}R_{S}} Aν=GmRD=1+gmRSgmRD

I f R s is large enough  → G m ≈ 1 / R s , A v = R D / R s \mathrm{If~}R_s\text{ is large enough }\to G_m{\approx}1/R_s,A_v{=}R_D/R_s If Rs is large enough Gm1/Rs,Av=RD/Rs

小信号分析

image-20240511220800843
v 1 = v i n − v x ν x = − v b s = R S i o u t v_{1}=v_{in}-v_{x}\quad\nu_{x}=-v_{bs}=R_{S}i_{out} v1=vinvxνx=vbs=RSiout

这篇关于模拟集成电路(3)----单级放大器(共源极)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/981636

相关文章

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

usaco 1.2 Transformations(模拟)

我的做法就是一个一个情况枚举出来 注意计算公式: ( 变换后的矩阵记为C) 顺时针旋转90°:C[i] [j]=A[n-j-1] [i] (旋转180°和270° 可以多转几个九十度来推) 对称:C[i] [n-j-1]=A[i] [j] 代码有点长 。。。 /*ID: who jayLANG: C++TASK: transform*/#include<

hdu4431麻将模拟

给13张牌。问增加哪些牌可以胡牌。 胡牌有以下几种情况: 1、一个对子 + 4组 3个相同的牌或者顺子。 2、7个不同的对子。 3、13幺 贪心的思想: 对于某张牌>=3个,先减去3个相同,再组合顺子。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOExcepti

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟)

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟) 题目描述 给定一个链表,链表中的每个节点代表一个整数。链表中的整数由 0 分隔开,表示不同的区间。链表的开始和结束节点的值都为 0。任务是将每两个相邻的 0 之间的所有节点合并成一个节点,新节点的值为原区间内所有节点值的和。合并后,需要移除所有的 0,并返回修改后的链表头节点。 思路分析 初始化:创建一个虚拟头节点

每日一题|牛客竞赛|四舍五入|字符串+贪心+模拟

每日一题|四舍五入 四舍五入 心有猛虎,细嗅蔷薇。你好朋友,这里是锅巴的C\C++学习笔记,常言道,不积跬步无以至千里,希望有朝一日我们积累的滴水可以击穿顽石。 四舍五入 题目: 牛牛发明了一种新的四舍五入应用于整数,对个位四舍五入,规则如下 12345->12350 12399->12400 输入描述: 输入一个整数n(0<=n<=109 ) 输出描述: 输出一个整数

【算法专场】模拟(下)

目录 前言 38. 外观数列 算法分析 算法思路 算法代码 1419. 数青蛙 算法分析 算法思路 算法代码  2671. 频率跟踪器 算法分析 算法思路 算法代码 前言 在前面我们已经讲解了什么是模拟算法,这篇主要是讲解在leetcode上遇到的一些模拟题目~ 38. 外观数列 算法分析 这道题其实就是要将连续且相同的字符替换成字符重复的次数+

模拟实现vector中的常见接口

insert void insert(iterator pos, const T& x){if (_finish == _endofstorage){int n = pos - _start;size_t newcapacity = capacity() == 0 ? 2 : capacity() * 2;reserve(newcapacity);pos = _start + n;//防止迭代

PHP实现二叉树遍历(非递归方式,栈模拟实现)

二叉树定义是这样的:一棵非空的二叉树由根结点及左、右子树这三个基本部分组成,根据节点的访问位置不同有三种遍历方式: ① NLR:前序遍历(PreorderTraversal亦称(先序遍历)) ——访问结点的操作发生在遍历其左右子树之前。 ② LNR:中序遍历(InorderTraversal) ——访问结点的操作发生在遍历其左右子树之中(间)。 ③ LRN:后序遍历(PostorderT

1 模拟——67. 二进制求和

1 模拟 67. 二进制求和 给你两个二进制字符串 a 和 b ,以二进制字符串的形式返回它们的和。 示例 1:输入:a = "11", b = "1"输出:"100"示例 2:输入:a = "1010", b = "1011"输出:"10101" 算法设计 可以从低位到高位(从后向前)计算,用一个变量carry记录进位,如果有字符没处理完或者有进位,则循环处理。两个字符串对

AMAZING AUCTION(简单模拟)

AMAZING AUCTION 时间限制: 3000 ms  |  内存限制: 65535 KB 难度:4 描述 Recently the auction house hasintroduced a new type of auction, the lowest price auction. In this new system,people compete for the lo