[优选算法]------滑动窗⼝——209. 长度最小的子数组

2024-05-12 02:12

本文主要是介绍[优选算法]------滑动窗⼝——209. 长度最小的子数组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 1.题目

1.解法⼀(暴⼒求解)(会超时):

 2.解法⼆(滑动窗⼝):

1.算法思路:

2.手撕图解

3.代码实现

 1.C++

2.C语言 


 1.题目

209. 长度最小的子数组

给定一个含有 n 个正整数的数组和一个正整数 target 。

找出该数组中满足其总和大于等于 target 长度最小 连续

子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度如果不存在符合条件的子数组,返回 0 。

示例 1:

输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。

示例 2:

输入:target = 4, nums = [1,4,4]
输出:1

示例 3:

输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0

提示:

  • 1 <= target <= 109
  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 105

1.解法⼀(暴⼒求解)(会超时):


算法思路:
「从前往后」枚举数组中的任意⼀个元素,把它当成起始位置。然后从这个「起始位置」开始,然
后寻找⼀段最短的区间,使得这段区间的和「⼤于等于」⽬标值。
将所有元素作为起始位置所得的结果中,找到「最⼩值」即可。

class Solution {
public:int minSubArrayLen(int target, vector<int>& nums) {// 记录结果int ret = INT_MAX;int n = nums.size();// 枚举出所有满⾜和⼤于等于 target 的⼦数组[start, end]// 由于是取到最⼩,因此枚举的过程中要尽量让数组的⻓度最⼩// 枚举开始位置for (int start = 0; start < n; start++) {int sum = 0; // 记录从这个位置开始的连续数组的和// 寻找结束位置for (int end = start; end < n; end++) {sum += nums[end];  // 将当前位置加上if (sum >= target) // 当这段区间内的和满⾜条件时{// 更新结果,start 开头的最短区间已经找到ret = min(ret, end - start + 1);break;}}}// 返回最后结果return ret == INT_MAX ? 0 : ret;}
};

 2.解法⼆(滑动窗⼝):


1.算法思路:


由于此问题分析的对象是「⼀段连续的区间」,因此可以考虑「滑动窗⼝」的思想来解决这道题。
让滑动窗⼝满⾜:从 i 位置开始,窗⼝内所有元素的和⼩于target(那么当窗⼝内元素之和
第⼀次⼤于等于⽬标值的时候,就是 i 位置开始,满⾜条件的最⼩⻓度)。


做法:将右端元素划⼊窗⼝中,统计出此时窗⼝内元素的和:


▪ 如果窗⼝内元素之和⼤于等于 target :更新结果,并且将左端元素划出去的同时继续判
断是否满⾜条件并更新结果(因为左端元素可能很⼩,划出去之后依旧满⾜条件)


▪ 如果窗⼝内元素之和不满⾜条件: right++ ,另下⼀个元素进⼊窗⼝。


相信科学(这也是很多题解以及帖⼦没告诉你的事情:只给你说怎么做,没给你解释为什么这么
做):

为何滑动窗⼝可以解决问题,并且时间复杂度更低


▪ 这个窗⼝寻找的是:以当前窗⼝最左侧元素(记为 left1 )为基准,符合条件的情况。也
就是在这道题中,从 left1 开始,满⾜区间和 sum >= target 时的最右侧(记为right1 )能到哪⾥。


▪ 我们既然已经找到从 left1 开始的最优的区间,那么就可以⼤胆舍去 left1 。但是如
果继续像⽅法⼀⼀样,重新开始统计第⼆个元素( left2 )往后的和,势必会有⼤量重复
的计算(因为我们在求第⼀段区间的时候,已经算出很多元素的和了,这些和是可以在计算
下次区间和的时候⽤上的)。
▪ 此时, rigth1 的作⽤就体现出来了,我们只需将 left1 这个值从 sum 中剔除。从right1 这个元素开始,往后找满⾜eft2 元素的区间(此时right1也有可能是满⾜的,因为 left1 可能很⼩。 sum 剔除掉left1 之后,依旧满⾜⼤于等于target )。这样我们就能省掉⼤量重复的计算。
▪ 这样我们不仅能解决问题,⽽且效率也会⼤⼤提升。
时间复杂度:虽然代码是两层循环,但是我们的 left 指针和right 指针都是不回退的,两者
最多都往后移动 n 次。因此时间复杂度是O(N)

2.手撕图解

3.代码实现

INT_MAX是C语言中的一个宏定义,表示整型数据类型int的最大值。在32位系统中,它的值为2147483647;在64位系统中,它的值为9223372036854775807。这个值可以用来进行数据类型转换、判断数据是否越界等操作。

 1.C++

class Solution {
public:int minSubArrayLen(int target, vector<int>& nums) {int n = nums.size(), sum = 0, len = INT_MAX;for (int left = 0, right = 0; right < n; right++) {sum += nums[right];   // 进窗⼝while (sum >= target) // 判断{len = min(len, right - left + 1); // 更新结果sum -= nums[left++];              // 出窗⼝}}return len == INT_MAX ? 0 : len;}
};

2.C语言 

int minSubArrayLen(int target, int* nums, int numsSize)
{int sum = 0, len = INT_MAX;for (int left = 0, right = 0; right < numsSize; right++) {sum += nums[right];   // 进窗⼝while (sum >= target) // 判断{len = len < right - left + 1 ? len : right - left + 1; // 更新结果sum -= nums[left++];              // 出窗⼝}}return len == INT_MAX ? 0 : len;
}

这篇关于[优选算法]------滑动窗⼝——209. 长度最小的子数组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/981312

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

基于Redis有序集合实现滑动窗口限流的步骤

《基于Redis有序集合实现滑动窗口限流的步骤》滑动窗口算法是一种基于时间窗口的限流算法,通过动态地滑动窗口,可以动态调整限流的速率,Redis有序集合可以用来实现滑动窗口限流,本文介绍基于Redis... 滑动窗口算法是一种基于时间窗口的限流算法,它将时间划分为若干个固定大小的窗口,每个窗口内记录了该时间

vue如何监听对象或者数组某个属性的变化详解

《vue如何监听对象或者数组某个属性的变化详解》这篇文章主要给大家介绍了关于vue如何监听对象或者数组某个属性的变化,在Vue.js中可以通过watch监听属性变化并动态修改其他属性的值,watch通... 目录前言用watch监听深度监听使用计算属性watch和计算属性的区别在vue 3中使用watchE

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig