数学学习笔记1——二次函数中的数形结合

2024-05-12 02:12

本文主要是介绍数学学习笔记1——二次函数中的数形结合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二次函数中的数形结合

一、解一元二次不等式

基本方法:配方。

x 2 − 4 x + 3 < 0 → ( x − 2 ) 2 < 1 → ∣ x − 2 ∣ < 1 → 1 < x < 3 x^2-4x+3<0\to(x-2)^2<1\to\lvert x-2\rvert<1\to1<x<3 x24x+3<0(x2)2<1x2<11<x<3

数形结合: y = x 2 − 4 x + 3 < 0 → y = ( x − 1 ) ( x − 3 ) < 0 → 1 < x < 3 y=x^2-4x+3<0\to y=(x-1)(x-3)<0\to1<x<3 y=x24x+3<0y=(x1)(x3)<01<x<3
在这里插入图片描述
练习:

  1. 2 x 2 − x − 1 ≥ 0 → ( 2 x + 1 ) ( x − 1 ) ≥ 0 → x ≤ − 1 2 or ⁡ x ≥ 1 2x^2-x-1\ge0\to(2x+1)(x-1)\ge0\to x\le-\cfrac{1}{2}\operatorname{or}x\ge1 2x2x10(2x+1)(x1)0x21orx1
  2. − x 2 + x + 1 ≥ 0 → 1 − 5 2 ≤ x ≤ 1 + 5 2 -x^2+x+1\ge0\to\cfrac{1-\sqrt5}{2}\le x\le\cfrac{1+\sqrt5}{2} x2+x+10215 x21+5
  3. 3 x 2 − x + 1 < 0 Δ = 1 − 12 < 0 → 3x^2-x+1<0\ \Delta=1-12<0\to 3x2x+1<0 Δ=112<0 无解

二、数形结合判断根的范围 重点

前置知识

区间根定理:若连续1函数 f ( x ) f(x) f(x) 再区间 [ a , b ] [a,b] [a,b] 的两端函数值异号,则 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 内必有根。

1:不包括反比例函数等非连续函数。

三个事:

  1. 特殊值
  2. 对称轴
  3. 判别式

练习:

  1. f ( x ) = x 2 + x + a = 0 f(x)=x^2+x+a=0 f(x)=x2+x+a=0 的两根中一个大于 3 3 3,一个小于 3 3 3
    f ( 3 ) < 0 f(3)<0 f(3)<0 足矣。
  2. f ( x ) = x 2 + x + a = 0 f(x)=x^2+x+a=0 f(x)=x2+x+a=0 的两根都在 ( − 1 , 3 ) (-1,3) (1,3) 内。
  • f ( − 1 ) > 0 f(-1)>0 f(1)>0
  • f ( 3 ) > 0 f(3)>0 f(3)>0
  • − 1 < -1< 1< < 3 <3 <3
  • Δ ≥ 0 \Delta\ge0 Δ0

三、例题

解不等式 2 x 2 − 3 x − 2 > 0 2x^2-3x-2>0 2x23x2>0
2 x 2 − 3 x − 2 = ( 2 x + 1 ) ( x − 2 ) > 0 → x < − 1 2 or ⁡ x > 2 2x^2-3x-2=(2x+1)(x-2)>0\to x<-\cfrac{1}{2} \operatorname{or} x>2 2x23x2=(2x+1)(x2)>0x<21orx>2

解不等式 − x 2 − 2 x + 3 ≥ 0 -x^2-2x+3\ge0 x22x+30
− x 2 − 2 x + 3 = ( − x + 1 ) ( x + 3 ) ≥ 0 → − 3 ≤ x ≤ 1 -x^2-2x+3=(-x+1)(x+3)\ge0\to-3\le x\le1 x22x+3=(x+1)(x+3)03x1

解不等式 3 x 2 − x + 2 > 0 3x^2-x+2>0 3x2x+2>0
Δ = − 23 < 0 → x \Delta=-23<0\to x Δ=23<0x 为任意数

已知实数 x , y x,y x,y 满足 x 2 + y 2 + 2 x − 3 = 0 x^2+y^2+2x-3=0 x2+y2+2x3=0,则 2 x 2 + y 2 2x^2+y^2 2x2+y2 的最大值为________.
分析:消元。利用平方数求范围。
∵ y 2 = 3 − x 2 − 2 x ≥ 0 \because y^2=3-x^2-2x\ge0 y2=3x22x0
∴ − 3 ≤ x ≤ 1 \therefore-3\le x\le1 3x1
∴ 2 x 2 + y 2 = 2 x 2 + 3 − x 2 − 2 x = x 2 − 2 x + 3 = ( x − 1 ) 2 + 2 \therefore2x^2+y^2=2x^2+3-x^2-2x=x^2-2x+3=(x-1)^2+2 2x2+y2=2x2+3x22x=x22x+3=(x1)2+2
∴ \therefore x = − 3 x=-3 x=3 时, max ⁡ = 18 \max=18 max=18

若关于 x x x 的一元二次方程 x 2 + ( m − 5 ) x + m − 2 = 0 x^2+(m-5)x+m-2=0 x2+(m5)x+m2=0 有实根,且一根大于 1 1 1,另一根小于 2 2 2,则实数 m m m 的取值范围为________________.
分析:数形结合后可得 f ( 2 ) < 0 f(2)<0 f(2)<0,即可代入原函数求出 m m m 的取值范围。

  • f ( 2 ) < 0 → 4 + 2 ( m − 5 ) + m − 2 = 3 m − 8 < 0 → m < 8 3 f(2)<0\to4+2(m-5)+m-2=3m-8<0\to m<\cfrac{8}{3} f(2)<04+2(m5)+m2=3m8<0m<38

∴ m < 8 3 \therefore m<\cfrac{8}{3} m<38

若关于 x x x 的一元二次方程 x 2 − ( 2 − a ) x + 5 − a = 0 x^2-(2-a)x+5-a=0 x2(2a)x+5a=0 有实根,且一根在区间 ( 0 , 2 ) (0,2) (0,2) 内,另一根在区间 4 , 6 4,6 4,6 内,则实数 a a a 的取值范围为________________.
分析:数形结合后可得 f ( 0 ) > 0 , f ( 2 ) < 0 , f ( 4 ) < 0 , f ( 6 ) > 0 f(0)>0,f(2)<0,f(4)<0,f(6)>0 f(0)>0,f(2)<0,f(4)<0,f(6)>0,即可代入原函数求出 a a a 的取值范围。

  • f ( 0 ) > 0 → 5 − a > 0 → a < 5 f(0)>0\to5-a>0\to a<5 f(0)>05a>0a<5
  • f ( 2 ) < 0 → 4 − 2 ( 2 − a ) + 5 − a = a + 5 < 0 → a < − 5 f(2)<0\to4-2(2-a)+5-a=a+5<0\to a<-5 f(2)<042(2a)+5a=a+5<0a<5
  • f ( 4 ) < 0 → 16 − 4 ( 2 − a ) + 5 − a = 3 a + 13 < 0 → a < − 13 3 f(4)<0\to16-4(2-a)+5-a=3a+13<0\to a<-\cfrac{13}{3} f(4)<0164(2a)+5a=3a+13<0a<313
  • f ( 6 ) > 0 → 36 − 6 ( 2 − a ) + 5 − a = 5 a + 29 > 0 → a > − 29 5 f(6)>0\to36-6(2-a)+5-a=5a+29>0\to a>-\cfrac{29}{5} f(6)>0366(2a)+5a=5a+29>0a>529

∴ − 29 5 < a < − 5 \therefore-\cfrac{29}{5}<a<-5 529<a<5

若关于 x x x 的一元二次方程 a x 2 − 2 x + 1 = 0 ( a > 0 ) ax^2-2x+1=0(a>0) ax22x+1=0(a>0) 有实根,且一根在区间 ( 1 , 3 ) (1,3) (1,3) 内,另一根小于 1 1 1,则实数 a a a 的取值范围为________________.
分析:数形结合后可得 f ( 1 ) < 0 , f ( 3 ) > 0 f(1)<0,f(3)>0 f(1)<0,f(3)>0,即可代入原函数求出 a a a 的取值范围。

  • f ( 1 ) < 0 → a − 1 < 0 → a < 1 f(1)<0\to a-1<0\to a<1 f(1)<0a1<0a<1
  • f ( 3 ) > 0 → 9 a − 5 > 0 → a > 5 9 f(3)>0\to 9a-5>0\to a>\cfrac{5}{9} f(3)>09a5>0a>95

∴ 5 9 < a < 1 \therefore\cfrac{5}{9}<a<1 95<a<1

若关于 x x x 的一元二次方程 x 2 + ( m − 5 ) x + m − 2 = 0 x^2+(m-5)x+m-2=0 x2+(m5)x+m2=0 有实根,且两根都小于 − 2 -2 2,则实数 m m m 的取值范围为________________.
分析:数形结合后可得 f ( − 2 ) > 0 , f(-2)>0, f(2)>0, < − 2 , Δ ≥ 0 <-2,\Delta\ge0 <2,Δ0,即可代入原函数求出 m m m 的取值范围。

  • f ( − 2 ) > 0 → 4 − 2 ( m − 5 ) + m − 2 = 12 − m > 0 → m < 12 f(-2)>0\to4-2(m-5)+m-2=12-m>0\to m<12 f(2)>042(m5)+m2=12m>0m<12
  • < − 2 → − m − 5 2 < − 2 → m > 9 <-2\to-\cfrac{m-5}{2}<-2\to m>9 <22m5<2m>9
  • Δ ≥ 0 → ( m − 5 ) 2 − 4 ( m − 2 ) = m 2 − 14 m + 33 ≥ 0 → m ≤ 3 \Delta\ge0\to(m-5)^2-4(m-2)=m^2-14m+33\ge0\to m\le3 Δ0(m5)24(m2)=m214m+330m3 m ≥ 11 m\ge11 m11

∴ 11 ≤ m < 12 \therefore11\le m<12 11m<12

若关于 x x x 的一元二次方程 4 x 2 − 2 m x + n = 0 4x^2-2mx+n=0 4x22mx+n=0 有实根,且两根都在区间 ( 0 , 1 ) (0,1) (0,1) 内,已知 m , n m,n m,n 均为正整数,则 m 2 + n = m^2+n= m2+n= ________________.
分析:数形结合后可得 f ( 0 ) > 0 , f ( 1 ) > 0 , 0 < f(0)>0,f(1)>0,0< f(0)>0,f(1)>0,0< < 1 , Δ ≥ 0 <1,\Delta\ge0 <1,Δ0,代入原函数可求出 m , n m,n m,n 的取值范围,最后分类讨论即可求出答案。

  • f ( 0 ) > 0 → n > 0 f(0)>0\to n>0 f(0)>0n>0 无用
  • f ( 1 ) > 0 → 4 − 2 m + n > 0 → 4 + n > 2 m f(1)>0\to4-2m+n>0\to4+n>2m f(1)>042m+n>04+n>2m
  • 0 < 0< 0< < 1 → 0 < 2 m 8 < 1 → 0 < m < 4 <1\to0<\cfrac{2m}{8}<1\to0<m<4 <10<82m<10<m<4
  • Δ ≥ 0 → 4 m 2 − 16 n ≥ 0 → m 2 ≥ 4 n \Delta\ge0\to4m^2-16n\ge0\to m^2\ge4n Δ04m216n0m24n

分类讨论:

m m m 1 1 1 2 2 2 3 3 3
n n n × \times × 1 1 1 × \times ×

m 2 + n = 5 m^2+n=5 m2+n=5.

若关于 x x x 的一元二次方程 m x 2 − ( 2 m + 1 ) x + 5 m + 1 = 0 mx^2-(2m + 1)x + 5m + 1 = 0 mx2(2m+1)x+5m+1=0 有实根,且在区间 [ 3 2 , 5 ] [\cfrac{3}{2},5] [23,5] 内恰有一根,求实数 m m m 的取值范围。
分析:因为不知道 m m m 的正负,所以二次函数的开口朝向就不知道了,所以考虑分类讨论。

  1. f ( 3 2 ) > 0 f(\cfrac{3}{2})>0 f(23)>0 f ( 5 ) < 0 f(5)<0 f(5)<0
  • 9 4 − ( 3 m + 3 2 ) + 5 m + 1 > 0 \cfrac{9}{4}-(3m+\cfrac{3}{2})+5m+1>0 49(3m+23)+5m+1>0
  • 25 m − ( 10 m + 5 ) + 5 m + 1 < 0 25m-(10m+5)+5m+1<0 25m(10m+5)+5m+1<0
    ∴ m > 2 17 \therefore m>\cfrac{2}{17} m>172 m < 1 5 m<\cfrac{1}{5} m<51
  1. f ( 3 2 ) < 0 f(\cfrac{3}{2})<0 f(23)<0 f ( 5 ) > 0 f(5)>0 f(5)>0
  • 9 4 m − ( 3 m + 3 2 ) + 5 m + 1 < 0 \cfrac{9}{4}m-(3m+\cfrac{3}{2})+5m+1<0 49m(3m+23)+5m+1<0
  • 25 m − ( 10 m + 5 ) + 5 m + 1 > 0 25m-(10m+5)+5m+1>0 25m(10m+5)+5m+1>0
    ∴ m < 2 17 \therefore m<\cfrac{2}{17} m<172 m > 1 5 m>\cfrac{1}{5} m>51(舍)
  1. f ( 3 2 ) = 0 f(\cfrac{3}{2})=0 f(23)=0
  • 9 4 m − ( 3 m + 3 2 ) + 5 m + 1 = 0 \cfrac{9}{4}m-(3m+\cfrac{3}{2})+5m+1=0 49m(3m+23)+5m+1=0
    ∴ m = 2 17 \therefore m=\cfrac{2}{17} m=172
  1. f ( 5 ) = 0 f(5)=0 f(5)=0
  • 25 m − ( 10 m + 5 ) + 5 m + 1 = 0 25m-(10m+5)+5m+1=0 25m(10m+5)+5m+1=0
    ∴ m − 1 5 \therefore m-\cfrac{1}{5} m51
    ∴ 1 5 x 2 − 7 5 x + 2 = 0 \therefore\cfrac{1}{5}x^2-\cfrac{7}{5}x+2=0 51x257x+2=0
    ∴ ( x − 2 ) ( x − 5 ) = 0 \therefore(x-2)(x-5)=0 (x2)(x5)=0
    ∴ x = 2 \therefore x=2 x=2 5 5 5(舍)

综上, 2 17 ≤ x < 1 5 \cfrac{2}{17}\le x<\cfrac{1}{5} 172x<51

已知关于 x x x 的方程 4 x 2 − 4 x + m = 0 4x^2 - 4x + m = 0 4x24x+m=0 在区间 [ − 1 , 1 ] [-1,1] [1,1] 内至少有一根,求 m m m 的取值范围。
分析:分类讨论即可。

  1. 两根在 [ − 1 , 1 ] [-1,1] [1,1]
  • f ( − 1 ) ≥ 0 → m ≥ − 8 f(-1)\ge0\to m\ge-8 f(1)0m8
  • f ( 1 ) ≥ 0 → m ≥ 0 f(1)\ge0\to m\ge0 f(1)0m0
  • − 1 ≤ -1\le 1 ≤ 1 → \le1\to 1 无用
  • Δ ≥ 0 → m ≤ 1 \Delta\ge0\to m\le1 Δ0m1
    ∴ 0 ≤ m ≤ 1 \therefore0\le m\le1 0m1
  1. 一根在 ( − 1 , 1 ) (-1,1) (1,1)
    f ( − 1 ) < 0 , f ( 1 ) > 0 f(-1)<0,f(1)>0 f(1)<0,f(1)>0 f ( − 1 ) > 0 , f ( 1 ) < 0 f(-1)>0,f(1)<0 f(1)>0,f(1)<0
    m < − 8 , m > 0 m<-8,m>0 m<8,m>0(舍) m > − 8 , m < 0 m>-8,m<0 m>8,m<0
    ∴ − 8 < m < 0 \therefore-8<m<0 8<m<0
  2. f ( − 1 ) = 0 f(-1)=0 f(1)=0
    m=-8
  3. f ( 1 ) = 0 f(1)=0 f(1)=0
    m=0

综上, − 8 ≤ m ≤ 1 -8\le m\le1 8m1

这篇关于数学学习笔记1——二次函数中的数形结合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/981311

相关文章

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>