bzoj1690/poj3621[Usaco2007 Dec]奶牛的旅行

2024-05-12 00:08

本文主要是介绍bzoj1690/poj3621[Usaco2007 Dec]奶牛的旅行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:bzoj poj

题目大意:

有N 个景点,参观第i 个景点会给奶牛带来Fi 点欢乐度。景点间有M 条道路,道路都是单行道,第i 条道路从Si 开始通向Ti,长度为Li。奶牛们可以选择从任意一个景点出发,在晚上结束的时候,奶牛必须回到这个起点和约翰汇合。

奶牛们想让欢乐度尽量大,但经讨厌走路,所以需要设计一条游览线路。定义一条游览线路的“欢乐指数”为该线路上所有景点的欢乐度之和与路程长度的比值。欢乐指数越大的线路越受奶牛的欢迎。在旅游的时候,奶牛们是乐意重复路过同一个景点的,但参观同一景点只记一次欢乐度。奶牛至少要参观两个景点,保证给定的道路系统里至少能找出一条环形线路,请帮助奶牛规划处一条欢乐指数最大的线路来吧。


题解:

0-1分数规划+Bellman-Ford

于是这是0-1分数规划中最优比率环问题啊。

于是需要知识储备qwq,并不熟(也不想打那么长东西)的我就跳过233。

我是get到关于0-1分数规划的链接

跳过之后就没有其他东西了尴尬qwq

二分答案,知道↑之后就可以推导出若sigma(xi*(mid*Li-F[a[i].x]))<=0(图中有负环了),即找到的答案比假设的答案要优。

啊啊啊因为把推导过程打出来真的很费时间啊,不写了><

(如果再看这道题发现不会做的话,回想一下关大学霸的推导√

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 1010
#define maxn 10100const int inf=0x7fffffff;
struct node
{int x,y,next;double c,d;
}a[maxn];int n,len,first[N],w[N];
double d[N];int cnt[N];bool v[N];
void ins(int x,int y,int c)
{a[++len].x=x;a[len].y=y;a[len].c=c;a[len].next=first[x];first[x]=len;
}
int head,tail,list[N];
bool BM()
{for (int i=2;i<=n;i++) d[i]=(double)inf,cnt[i]=v[i]=0;head=1;tail=2;list[1]=1;d[1]=0;cnt[1]=1;v[1]=1;while (head!=tail){int x=list[head];for (int k=first[x];k!=-1;k=a[k].next){int y=a[k].y;if (d[y]>a[k].d+d[x]){d[y]=a[k].d+d[x];if (!v[y]){list[tail++]=y;if (tail>n) tail=1;v[y]=true;cnt[y]++;}if (cnt[y]>n) return true;}}head++;v[x]=false;if (head>n) head=1;}return false;
}
int main()
{//freopen("sightsee.in","r",stdin); //freopen("sightsee.out","w",stdout);int m,i,x,y,c;double l,r,ret;scanf("%d%d",&n,&m);len=0;l=r=ret=0;memset(first,-1,sizeof(first));for (i=1;i<=n;i++) scanf("%d",&w[i]);for (i=1;i<=m;i++){scanf("%d%d%d",&x,&y,&c);ins(x,y,c);r+=(double)c;}while (r-l>=0.0001){double mid=(l+r)/2.0;for (i=1;i<=m;i++)a[i].d=mid*a[i].c-(double)w[a[i].x];//这里的话同时取起点或者终点的话就好???if (BM()) {ret=mid;l=mid+0.0001;}else r=mid-0.0001;}printf("%.2lf\n",ret);return 0;
}


这篇关于bzoj1690/poj3621[Usaco2007 Dec]奶牛的旅行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/981043

相关文章

社交平台找旅游搭子一起旅行靠谱吗?答案是不要太爽!

哈喽小伙伴们,今天要跟大家分享一个超级棒的小程序——咕哇找搭子!作为一个热爱自由行的人,最头疼的就是找不到志同道合的小伙伴。但自从用了这个咕哇小程序后,一切都变得简单又充满乐趣啦!🎉 上个月,我计划去云南旅行,就试着在咕哇上发布了我的行程信息。没想到很快就收到了几位朋友的回应,其中一位叫小莲的朋友特别投缘。我们不仅目的地一样,就连兴趣爱好都出奇地相似,于是我们就决定一起出发啦!👭

旅行商问题 | Matlab基于混合粒子群算法GA-PSO的旅行商问题TSP

目录 效果一览基本介绍建模步骤程序设计参考资料 效果一览 基本介绍 混合粒子群算法GA-PSO是一种结合了遗传算法(Genetic Algorithm, GA)和粒子群优化算法(Particle Swarm Optimization, PSO)的优化算法。在解决旅行商问题(Traveling Salesman Problem, TSP)时,这种混合算法可以结合两种算法的优点

P4842 城市旅行(拆贡献 + LCT)

https://www.luogu.com.cn/problem/P4842 发现题目就是要维护一个LCT,然后我们只要把pushup写成功了就行。 那我们现在就不管LCT了,就单纯想用一棵二叉查找树怎么维护。分母是好搞的,分子我们要想点办法。 考虑右子树对左子树的贡献,我们假设处理出一个 L [ k ] L[k] L[k] 表示左子树中每个值乘以左边界的可选数量,我们现在再乘上右子树的大

P3313 [SDOI2014] 旅行(分块做法)

~~~~~      P3313 [SDOI2014] 旅行 ~~~~~      总题单链接 思路 ~~~~~      遇到这种树上路径问题,就考虑用重链剖分转为区间问题。 ~~~~~      问题转换为了:给定一个区间和 k k k,求这个区间内信仰为 k k k 的城市的 权值和 或 最大权值。 ~~~~~      这个问题也可以用动态开点线段树解决(现在不会,以后

旅行追踪和行程规划工具AdventureLog

什么是 AdventureLog ? AdventureLog 是一种记录您的旅行并与世界分享的简单方法。您可以在日志中添加照片、笔记等。跟踪您访问过的国家、探索去过的地区和地方。您还可以查看您的旅行统计数据和里程碑。AdventureLog 旨在成为您终极的旅行伴侣,帮助您记录您的冒险经历并轻松规划新的冒险经历。 主要功能: 使用姓名、日期、地点、描述和评级等字段记录过去的冒险经

PHP指尖上的旅行管家手边酒店民宿预订系统小程序源码

指尖上的旅行管家——手边酒店民宿预订系统🌟🛫 🚀 开篇:旅行新伴侣,轻松启程 每次计划旅行,是不是都曾为找酒店、订民宿而头疼不已?🤔 繁琐的搜索、对比、预订流程,让美好的旅程还没开始就有点疲惫了呢。但现在,有了“手边酒店民宿预订系统”,一切都变得不一样了!🎉 它就像是你指尖上的旅行管家,随时待命,为你打造无忧的出行体验。 📱 一键操作,全球住宿尽在掌握 只需轻轻一点,手

1570C 旅行

题目描述 Tom和Alice结婚一段时间了,感情非常好,一天他们相约去旅行,终点在遥远的地方。        地形是非常复杂的,路途是非常曲折的。但我们简化一下是一个矩阵。起点也就是他们家在矩阵的左下角,终点也就是他们要去的遥远的地方在右上角,矩阵行列的交点是他们可以驻足的地方,但是有的却是陷阱,他们是不能从那里通过的。Tom要听Alice的,只会往上或往右走,不往回走,直到终点。

遗传算法与深度学习实战(8)——使用遗传算法解决旅行商问题

遗传算法与深度学习实战(8)——使用遗传算法解决旅行商问题 0. 前言1. 旅行商问题2. NP 问题3. 构建 TSP 求解器小结系列链接 0. 前言 旅行商问题 (Traveling Salesman Problem, TSP) 是一个经典的优化问题,其目标是找到一条最短的路径,使得旅行商可以访问一系列给定的城市并且每个城市只访问一次,最终回到出发地点。在本节中,我们将学习

hdu 2066 一个人的旅行(裸dijkstra)

http://acm.hdu.edu.cn/showproblem.php?pid=2066 求多源多汇的最短路,n最大为1000,floyd三重循环会超时。继续dijkstra吧。 #include <stdio.h>#include <algorithm>#include <set>#include <map>#include <vector>#include <mat

相遇在传智,梦想不再是孤独的旅行

相遇在传智,梦想不再是孤独的旅行     以下文章来自广州传智播客网页平面设计学院学员的感谢信——《相遇在传智,梦想不再是孤独的旅行》,广州传智播客专注平面UI设计培训,广州平面UI设计培训,广州平面设计,广州UI设计培训机构     那时,眼看着大三将至,意味着毕业在向自己一步一步地靠近,也意味着人生的又一个奋斗之旅即将要起航了,再想想自己在大学的两年里学到的东西,杂乱而不精