luceda ipkiss教程 71:统计线路中器件的个数

2024-05-11 20:28

本文主要是介绍luceda ipkiss教程 71:统计线路中器件的个数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

**案例分享:**统计线路中某一器件的个数
如,统计SplitterTree中mmi的个数:
在这里插入图片描述
在这里插入图片描述
所有代码如下:

# Copyright (C) 2020 Luceda Photonicsfrom si_fab import all as pdk
from ipkiss3 import all as i3class GeneralizedSplitterTree(i3.Circuit):splitter = i3.ChildCellProperty(doc="Splitter used.")n_levels = i3.PositiveIntProperty(default=3, doc="Number of tree levels.")spacing_x = i3.PositiveNumberProperty(default=100.0, doc="Horizontal spacing between the splitter levels.")spacing_y = i3.PositiveNumberProperty(default=50.0, doc="Vertical spacing between the splitters in the last level.")def _default_splitter(self):return pdk.MMI1x2Optimized1550()  # try changing this to the y-junction in the si_fab PDKdef _default_insts(self):insts = {}# 1.  Using nested for loops we can add all the splitters we need for the circuit, as well as name them# according to their position (level) in the circuit. Also note that the splitter is a parameter, so we could# easily replace all the MMIs with different MMIs or a y-splitter with just one change to the code.for level in range(self.n_levels):for splitter_no in range(2 ** level):insts[f"sp_{level}_{splitter_no}"] = self.splitterreturn instsdef _default_specs(self):specs = []# 2. Placing the MMIs is fairly straight forward, using local variables of x and y coordinates to help improve# the readability of the code. The "y-coord" in particular is not obvious, however the coordinate is derived# from the level and number in each level due to the relationship between each MMI. Again we use nested for# loops to achieve this.for level in range(self.n_levels):for splitter in range(2 ** level):x_coord = level * self.spacing_xy_coord = self.spacing_y * (-0.5 * 2 ** (self.n_levels - 1) + ((splitter + 0.5) * 2 ** (self.n_levels - level - 1)))specs.append(i3.Place(f"sp_{level}_{splitter}", (x_coord, y_coord)))# 3. For each MMI there are two output ports that need connecting. We decide how best to do this, using# "splitter % 2" which returns the remainder from dividing by 2. This will be 0 for even numbers and non-zero# for odd numbers. In this way we can separate the two outputs correctly.# In the level loop we start at 1, but then subtract 1 during the naming as the final level will not have any# connections.for level in range(1, self.n_levels):for splitter in range(2 ** level):if splitter % 2 == 0:in_port = f"sp_{level - 1}_{int(splitter / 2)}:out1"else:in_port = f"sp_{level - 1}_{int(splitter / 2)}:out2"out_port = f"sp_{level}_{splitter}:in1"specs.append(i3.ConnectBend(in_port, out_port))return specsdef _default_exposed_ports(self):# 4. In the same way we can expose the ports in the circuit. By default, all unconnected ports would be exposed,# but we want to rename them for simplicity.exposed_ports = {"sp_0_0:in1": "in"}  # adding the input portcnt = 1  # we use a local variable to keep track of how many output we have labeledlevel = self.n_levels - 1n_splitters = 2 ** levelfor splitter in range(n_splitters):  # looping over the output portsexposed_ports[f"sp_{level}_{splitter}:out1"] = f"out{cnt}"cnt += 1exposed_ports[f"sp_{level}_{splitter}:out2"] = f"out{cnt}"cnt += 1return exposed_portsif __name__ == "__main__":splitter_tree1 = GeneralizedSplitterTree(n_levels=5, splitter=pdk.MMI1x2Optimized1550())splitter_tree1_layout = splitter_tree1.Layout()splitter_tree1_layout.visualize()component_counted = pdk.MMI1x2Optimized1550()num_mmi = sum(1 for elems in splitter_tree1.Layout().layout if component_counted.name in elems.reference.name)print(num_mmi)

这篇关于luceda ipkiss教程 71:统计线路中器件的个数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980565

相关文章

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

PyCharm 接入 DeepSeek最新完整教程

《PyCharm接入DeepSeek最新完整教程》文章介绍了DeepSeek-V3模型的性能提升以及如何在PyCharm中接入和使用DeepSeek进行代码开发,本文通过图文并茂的形式给大家介绍的... 目录DeepSeek-V3效果演示创建API Key在PyCharm中下载Continue插件配置Con

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL

MySQL8.2.0安装教程分享

《MySQL8.2.0安装教程分享》这篇文章详细介绍了如何在Windows系统上安装MySQL数据库软件,包括下载、安装、配置和设置环境变量的步骤... 目录mysql的安装图文1.python访问网址2javascript.点击3.进入Downloads向下滑动4.选择Community Server5.

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

MySql9.1.0安装详细教程(最新推荐)

《MySql9.1.0安装详细教程(最新推荐)》MySQL是一个流行的关系型数据库管理系统,支持多线程和多种数据库连接途径,能够处理上千万条记录的大型数据库,本文介绍MySql9.1.0安装详细教程,... 目录mysql介绍:一、下载 Mysql 安装文件二、Mysql 安装教程三、环境配置1.右击此电脑

在idea中使用mysql数据库超详细教程

《在idea中使用mysql数据库超详细教程》:本文主要介绍如何在IntelliJIDEA中连接MySQL数据库,并使用控制台执行SQL语句,还详细讲解了如何使用MyBatisGenerator快... 目录一、连接mysql二、使用mysql三、快速生成实体、接口、sql文件总结一、连接mysql在ID