Redisson实现Redis分布式锁的N种姿势RedLock

2024-05-11 18:58

本文主要是介绍Redisson实现Redis分布式锁的N种姿势RedLock,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前几天发的一篇文章《Redlock:Redis分布式锁最牛逼的实现》,引起了一些同学的讨论,也有一些同学提出了一些疑问,这是好事儿。本文在讲解如何使用Redisson实现Redis普通分布式锁,以及Redlock算法分布式锁的几种方式的同时,也附带解答这些同学的一些疑问。

Redis几种架构

Redis发展到现在,几种常见的部署架构有:

  1. 单机模式;
  2. 主从模式;
  3. 哨兵模式;
  4. 集群模式;

我们首先基于这些架构讲解Redisson普通分布式锁实现,需要注意的是,只有充分了解普通分布式锁是如何实现的,才能更好的了解Redlock分布式锁的实现,因为Redlock分布式锁的实现完全基于普通分布式锁

普通分布式锁

Redis普通分布式锁这个大家基本上只了解,本文不打算过多的介绍,上一篇文章《Redlock:Redis分布式锁最牛逼的实现》也讲的很细,并且也说到了几个重要的注意点。

所以直接show you the code,毕竟talk is cheap。

  • redisson版本

本次测试选择redisson 2.14.1版本。

单机模式

源码如下:

// 构造redisson实现分布式锁必要的Config
Config config = new Config();
config.useSingleServer().setAddress("redis://172.29.1.180:5379").setPassword("a123456").setDatabase(0);
// 构造RedissonClient
RedissonClient redissonClient = Redisson.create(config);
// 设置锁定资源名称
RLock disLock = redissonClient.getLock("DISLOCK");
boolean isLock;
try {//尝试获取分布式锁isLock = disLock.tryLock(500, 15000, TimeUnit.MILLISECONDS);if (isLock) {//TODO if get lock success, do something;Thread.sleep(15000);}
} catch (Exception e) {
} finally {// 无论如何, 最后都要解锁disLock.unlock();
}

通过代码可知,经过Redisson的封装,实现Redis分布式锁非常方便,我们再看一下Redis中的value是啥,和前文分析一样,hash结构,key就是资源名称,field就是UUID+threadId,value就是重入值,在分布式锁时,这个值为1(Redisson还可以实现重入锁,那么这个值就取决于重入次数了):

172.29.1.180:5379> hgetall DISLOCK
1) "01a6d806-d282-4715-9bec-f51b9aa98110:1"
2) "1"

哨兵模式

即sentinel模式,实现代码和单机模式几乎一样,唯一的不同就是Config的构造:

Config config = new Config();
config.useSentinelServers().addSentinelAddress("redis://172.29.3.245:26378","redis://172.29.3.245:26379", "redis://172.29.3.245:26380").setMasterName("mymaster").setPassword("a123456").setDatabase(0);

集群模式

集群模式构造Config如下:

Config config = new Config();
config.useClusterServers().addNodeAddress("redis://172.29.3.245:6375","redis://172.29.3.245:6376", "redis://172.29.3.245:6377","redis://172.29.3.245:6378","redis://172.29.3.245:6379", "redis://172.29.3.245:6380").setPassword("a123456").setScanInterval(5000);

总结

普通分布式实现非常简单,无论是那种架构,向Redis通过EVAL命令执行LUA脚本即可。

Redlock分布式锁

那么Redlock分布式锁如何实现呢?以单机模式Redis架构为例,直接看实现代码:

Config config1 = new Config();
config1.useSingleServer().setAddress("redis://172.29.1.180:5378").setPassword("a123456").setDatabase(0);
RedissonClient redissonClient1 = Redisson.create(config1);Config config2 = new Config();
config2.useSingleServer().setAddress("redis://172.29.1.180:5379").setPassword("a123456").setDatabase(0);
RedissonClient redissonClient2 = Redisson.create(config2);Config config3 = new Config();
config3.useSingleServer().setAddress("redis://172.29.1.180:5380").setPassword("a123456").setDatabase(0);
RedissonClient redissonClient3 = Redisson.create(config3);String resourceName = "REDLOCK";
RLock lock1 = redissonClient1.getLock(resourceName);
RLock lock2 = redissonClient2.getLock(resourceName);
RLock lock3 = redissonClient3.getLock(resourceName);RedissonRedLock redLock = new RedissonRedLock(lock1, lock2, lock3);
boolean isLock;
try {isLock = redLock.tryLock(500, 30000, TimeUnit.MILLISECONDS);System.out.println("isLock = "+isLock);if (isLock) {//TODO if get lock success, do something;Thread.sleep(30000);}
} catch (Exception e) {
} finally {// 无论如何, 最后都要解锁System.out.println("");redLock.unlock();
}

最核心的变化就是RedissonRedLock redLock = new RedissonRedLock(lock1, lock2, lock3);,因为我这里是以三个节点为例。

那么如果是哨兵模式呢?需要搭建3个,或者5个sentinel模式集群(具体多少个,取决于你)。
那么如果是集群模式呢?需要搭建3个,或者5个cluster模式集群(具体多少个,取决于你)。

实现原理

既然核心变化是使用了RedissonRedLock,那么我们看一下它的源码有什么不同。这个类是RedissonMultiLock的子类,所以调用tryLock方法时,事实上调用了RedissonMultiLock的tryLock方法,精简源码如下:

public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {// 实现要点之允许加锁失败节点限制int failedLocksLimit = failedLocksLimit();List<RLock> acquiredLocks = new ArrayList<RLock>(locks.size());// 实现要点之遍历所有节点通过EVAL命令执行lua加锁for (ListIterator<RLock> iterator = locks.listIterator(); iterator.hasNext();) {RLock lock = iterator.next();boolean lockAcquired;try {// 对节点尝试加锁lockAcquired = lock.tryLock(awaitTime, newLeaseTime, TimeUnit.MILLISECONDS);} catch (RedisConnectionClosedException|RedisResponseTimeoutException e) {// 如果抛出这类异常,为了防止加锁成功,但是响应失败,需要解锁unlockInner(Arrays.asList(lock));lockAcquired = false;} catch (Exception e) {// 抛出异常表示获取锁失败lockAcquired = false;}if (lockAcquired) {// 成功获取锁集合acquiredLocks.add(lock);} else {// 如果达到了允许加锁失败节点限制,那么break,即此次Redlock加锁失败if (locks.size() - acquiredLocks.size() == failedLocksLimit()) {break;}               }}return true;
}

很明显,这段源码就是上一篇文章《Redlock:Redis分布式锁最牛逼的实现》提到的Redlock算法的完全实现。

以sentinel模式架构为例,如下图所示,有sentinel-1,sentinel-2,sentinel-3总计3个sentinel模式集群,如果要获取分布式锁,那么需要向这3个sentinel集群通过EVAL命令执行LUA脚本,需要3/2+1=2,即至少2个sentinel集群响应成功,才算成功的以Redlock算法获取到分布式锁:

Redlock分布式锁

问题合集

image.png

根据上面实现原理的分析,这位同学应该是对Redlock算法实现有一点点误解,假设我们用5个节点实现Redlock算法的分布式锁。那么要么是5个redis单实例,要么是5个sentinel集群,要么是5个cluster集群。而不是一个有5个主节点的cluster集群,然后向每个节点通过EVAL命令执行LUA脚本尝试获取分布式锁,如上图所示。

  • 失效时间如何设置

这个问题的场景是,假设设置失效时间10秒,如果由于某些原因导致10秒还没执行完任务,这时候锁自动失效,导致其他线程也会拿到分布式锁。

这确实是Redis分布式最大的问题,不管是普通分布式锁,还是Redlock算法分布式锁,都没有解决这个问题。也有一些文章提出了对失效时间续租,即延长失效时间,很明显这又提升了分布式锁的复杂度。另外就笔者了解,没有现成的框架有实现,如果有哪位知道,可以告诉我,万分感谢。

  • redis分布式锁的高可用

关于Redis分布式锁的安全性问题,在分布式系统专家Martin Kleppmann和Redis的作者antirez之间已经发生过一场争论。有兴趣的同学,搜索"基于Redis的分布式锁到底安全吗"就能得到你想要的答案,需要注意的是,有上下两篇(这应该就是传说中的神仙打架吧,哈)。

  • zookeeper or redis

没有绝对的好坏,只有更适合自己的业务。就性能而言,redis很明显优于zookeeper;就分布式锁实现的健壮性而言,zookeeper很明显优于redis。如何选择,取决于你的业务!



作者:阿飞的博客
链接:https://www.jianshu.com/p/f302aa345ca8
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

这篇关于Redisson实现Redis分布式锁的N种姿势RedLock的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980377

相关文章

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

PyQt6/PySide6中QTableView类的实现

《PyQt6/PySide6中QTableView类的实现》本文主要介绍了PyQt6/PySide6中QTableView类的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学... 目录1. 基本概念2. 创建 QTableView 实例3. QTableView 的常用属性和方法

PyQt6/PySide6中QTreeView类的实现

《PyQt6/PySide6中QTreeView类的实现》QTreeView是PyQt6或PySide6库中用于显示分层数据的控件,本文主要介绍了PyQt6/PySide6中QTreeView类的实现... 目录1. 基本概念2. 创建 QTreeView 实例3. QTreeView 的常用属性和方法属性

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服