白话机器学习4:小波分解的原理与Python代码实现

2024-05-11 15:20

本文主要是介绍白话机器学习4:小波分解的原理与Python代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        小波去噪可以想象成使用一把“筛子”来过滤信号。这个“筛子”能够根据信号的不同频率成分,将其分解成多个层次。在这个过程中,信号的重要信息通常包含在低频部分,而噪声则多分布在高频部分。

        将信号通过这个“筛子”分解后,我们可以对那些包含噪声的高频部分进行“削弱”或“切除”,然后再将剩下的部分重新组合起来。这样,经过处理的信号就会保留下重要的信息,同时去除了很多噪声。

一、数学原理详解

小波变换通过一系列可缩放(尺度变化)和平移的基函数来表示信号。这些基函数称为小波函数。

小波函数 \psi(t)具有一定的时间长度并集中在频率上,可以通过缩放(dilation)和平移(translation)来拟合信号的不同部分:

\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right)

其中 a 是尺度参数,b 是平移参数。

分解:

信号f(t)可以通过小波函数的线性组合来分解:

f(t) = \sum_{a,b} c_{a,b} \psi_{a,b}(t)

其中c_{a,b}是小波系数。

在实际操作中,通过离散小波变换DWT,我们可以得到信号在不同尺度和位置的小波系数。

去噪

小波去噪的步骤通常包括:

  1. 选择小波基:选择一个适当的小波函数,比如Daubechies小波。

  2. 多尺度分解:将信号进行多层分解,得到不同尺度上的小波系数。

  3. 阈值处理:对小波系数应用阈值规则。系数小于某个阈值的被视为噪声并设置为零或减小其值。阈值的选择是一个关键步骤,常用的方法有软阈值和硬阈值。软阈值方法会对系数进行收缩,而硬阈值方法会直接将小于阈值的系数置为零。

    硬阈值

    软阈值:  d'{ij} = \text{sign}(d{ij}) \cdot (\max(|d_{ij}| - \lambda, 0)) 

    其中d_{ij}是分解得到的小波系数,\lambda是阈值,d'_{ij}是处理后的小波系数。

  4. 重构信号:使用阈值处理后的小波系数重构信号,这样得到的信号中噪声就会被减少。

二、Python代码实现

import matplotlib.pyplot as plt
import pywt
import seaborn as snssns.set(context='notebook', style='darkgrid', palette='deep', font='sans-serif', font_scale=1, color_codes=False, rc=None)
plt.rcParams['axes.unicode_minus'] = False  # 防止坐标为负时出现乱码
ecg = [......]  # 改成自己的数据index = []
data = []
for i in range(len(ecg) - 1):X = float(i)Y = float(ecg[i])index.append(X)data.append(Y)# Create wavelet object and define parameters
w = pywt.Wavelet('db4')  # 选用Daubechies4小波maxlev = pywt.dwt_max_level(len(data), w.dec_len)
print("maximum level is " + str(maxlev))
# threshold = 0.04  # Threshold for filtering
threshold = 0.08
# Decompose into wavelet components, to the level selected:
coeffs = pywt.wavedec(data, 'db4', level=maxlev)  # 将信号进行小波分解plt.figure()
for i in range(1, len(coeffs)):coeffs[i] = pywt.threshold(coeffs[i], threshold * max(coeffs[i]))  # 将噪声滤波datarec = pywt.waverec(coeffs, 'db4')  # 将信号进行小波重构mintime = 0
maxtime = mintime + len(data) + 1# plt.xkcd()  # 胆小勿入
# plt.figure()
plt.subplot(2, 1, 1)
plt.plot(index[mintime:maxtime], data[mintime:maxtime], linewidth=1.1, color='r')
plt.xlabel('time (s)')
plt.ylabel('microvolts (uV)')
plt.title("Raw signal")
plt.subplot(2, 1, 2)
plt.plot(index[mintime:maxtime], datarec[mintime:maxtime - 1], linewidth=1.1, color='r')
plt.xlabel('time (s)')
plt.ylabel('microvolts (uV)')
plt.title("De-noised signal using wavelet techniques")plt.tight_layout()
plt.show()

三、结果展示

这篇关于白话机器学习4:小波分解的原理与Python代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979911

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模