白话机器学习4:小波分解的原理与Python代码实现

2024-05-11 15:20

本文主要是介绍白话机器学习4:小波分解的原理与Python代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        小波去噪可以想象成使用一把“筛子”来过滤信号。这个“筛子”能够根据信号的不同频率成分,将其分解成多个层次。在这个过程中,信号的重要信息通常包含在低频部分,而噪声则多分布在高频部分。

        将信号通过这个“筛子”分解后,我们可以对那些包含噪声的高频部分进行“削弱”或“切除”,然后再将剩下的部分重新组合起来。这样,经过处理的信号就会保留下重要的信息,同时去除了很多噪声。

一、数学原理详解

小波变换通过一系列可缩放(尺度变化)和平移的基函数来表示信号。这些基函数称为小波函数。

小波函数 \psi(t)具有一定的时间长度并集中在频率上,可以通过缩放(dilation)和平移(translation)来拟合信号的不同部分:

\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right)

其中 a 是尺度参数,b 是平移参数。

分解:

信号f(t)可以通过小波函数的线性组合来分解:

f(t) = \sum_{a,b} c_{a,b} \psi_{a,b}(t)

其中c_{a,b}是小波系数。

在实际操作中,通过离散小波变换DWT,我们可以得到信号在不同尺度和位置的小波系数。

去噪

小波去噪的步骤通常包括:

  1. 选择小波基:选择一个适当的小波函数,比如Daubechies小波。

  2. 多尺度分解:将信号进行多层分解,得到不同尺度上的小波系数。

  3. 阈值处理:对小波系数应用阈值规则。系数小于某个阈值的被视为噪声并设置为零或减小其值。阈值的选择是一个关键步骤,常用的方法有软阈值和硬阈值。软阈值方法会对系数进行收缩,而硬阈值方法会直接将小于阈值的系数置为零。

    硬阈值

    软阈值:  d'{ij} = \text{sign}(d{ij}) \cdot (\max(|d_{ij}| - \lambda, 0)) 

    其中d_{ij}是分解得到的小波系数,\lambda是阈值,d'_{ij}是处理后的小波系数。

  4. 重构信号:使用阈值处理后的小波系数重构信号,这样得到的信号中噪声就会被减少。

二、Python代码实现

import matplotlib.pyplot as plt
import pywt
import seaborn as snssns.set(context='notebook', style='darkgrid', palette='deep', font='sans-serif', font_scale=1, color_codes=False, rc=None)
plt.rcParams['axes.unicode_minus'] = False  # 防止坐标为负时出现乱码
ecg = [......]  # 改成自己的数据index = []
data = []
for i in range(len(ecg) - 1):X = float(i)Y = float(ecg[i])index.append(X)data.append(Y)# Create wavelet object and define parameters
w = pywt.Wavelet('db4')  # 选用Daubechies4小波maxlev = pywt.dwt_max_level(len(data), w.dec_len)
print("maximum level is " + str(maxlev))
# threshold = 0.04  # Threshold for filtering
threshold = 0.08
# Decompose into wavelet components, to the level selected:
coeffs = pywt.wavedec(data, 'db4', level=maxlev)  # 将信号进行小波分解plt.figure()
for i in range(1, len(coeffs)):coeffs[i] = pywt.threshold(coeffs[i], threshold * max(coeffs[i]))  # 将噪声滤波datarec = pywt.waverec(coeffs, 'db4')  # 将信号进行小波重构mintime = 0
maxtime = mintime + len(data) + 1# plt.xkcd()  # 胆小勿入
# plt.figure()
plt.subplot(2, 1, 1)
plt.plot(index[mintime:maxtime], data[mintime:maxtime], linewidth=1.1, color='r')
plt.xlabel('time (s)')
plt.ylabel('microvolts (uV)')
plt.title("Raw signal")
plt.subplot(2, 1, 2)
plt.plot(index[mintime:maxtime], datarec[mintime:maxtime - 1], linewidth=1.1, color='r')
plt.xlabel('time (s)')
plt.ylabel('microvolts (uV)')
plt.title("De-noised signal using wavelet techniques")plt.tight_layout()
plt.show()

三、结果展示

这篇关于白话机器学习4:小波分解的原理与Python代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979911

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形