白话机器学习4:小波分解的原理与Python代码实现

2024-05-11 15:20

本文主要是介绍白话机器学习4:小波分解的原理与Python代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        小波去噪可以想象成使用一把“筛子”来过滤信号。这个“筛子”能够根据信号的不同频率成分,将其分解成多个层次。在这个过程中,信号的重要信息通常包含在低频部分,而噪声则多分布在高频部分。

        将信号通过这个“筛子”分解后,我们可以对那些包含噪声的高频部分进行“削弱”或“切除”,然后再将剩下的部分重新组合起来。这样,经过处理的信号就会保留下重要的信息,同时去除了很多噪声。

一、数学原理详解

小波变换通过一系列可缩放(尺度变化)和平移的基函数来表示信号。这些基函数称为小波函数。

小波函数 \psi(t)具有一定的时间长度并集中在频率上,可以通过缩放(dilation)和平移(translation)来拟合信号的不同部分:

\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right)

其中 a 是尺度参数,b 是平移参数。

分解:

信号f(t)可以通过小波函数的线性组合来分解:

f(t) = \sum_{a,b} c_{a,b} \psi_{a,b}(t)

其中c_{a,b}是小波系数。

在实际操作中,通过离散小波变换DWT,我们可以得到信号在不同尺度和位置的小波系数。

去噪

小波去噪的步骤通常包括:

  1. 选择小波基:选择一个适当的小波函数,比如Daubechies小波。

  2. 多尺度分解:将信号进行多层分解,得到不同尺度上的小波系数。

  3. 阈值处理:对小波系数应用阈值规则。系数小于某个阈值的被视为噪声并设置为零或减小其值。阈值的选择是一个关键步骤,常用的方法有软阈值和硬阈值。软阈值方法会对系数进行收缩,而硬阈值方法会直接将小于阈值的系数置为零。

    硬阈值

    软阈值:  d'{ij} = \text{sign}(d{ij}) \cdot (\max(|d_{ij}| - \lambda, 0)) 

    其中d_{ij}是分解得到的小波系数,\lambda是阈值,d'_{ij}是处理后的小波系数。

  4. 重构信号:使用阈值处理后的小波系数重构信号,这样得到的信号中噪声就会被减少。

二、Python代码实现

import matplotlib.pyplot as plt
import pywt
import seaborn as snssns.set(context='notebook', style='darkgrid', palette='deep', font='sans-serif', font_scale=1, color_codes=False, rc=None)
plt.rcParams['axes.unicode_minus'] = False  # 防止坐标为负时出现乱码
ecg = [......]  # 改成自己的数据index = []
data = []
for i in range(len(ecg) - 1):X = float(i)Y = float(ecg[i])index.append(X)data.append(Y)# Create wavelet object and define parameters
w = pywt.Wavelet('db4')  # 选用Daubechies4小波maxlev = pywt.dwt_max_level(len(data), w.dec_len)
print("maximum level is " + str(maxlev))
# threshold = 0.04  # Threshold for filtering
threshold = 0.08
# Decompose into wavelet components, to the level selected:
coeffs = pywt.wavedec(data, 'db4', level=maxlev)  # 将信号进行小波分解plt.figure()
for i in range(1, len(coeffs)):coeffs[i] = pywt.threshold(coeffs[i], threshold * max(coeffs[i]))  # 将噪声滤波datarec = pywt.waverec(coeffs, 'db4')  # 将信号进行小波重构mintime = 0
maxtime = mintime + len(data) + 1# plt.xkcd()  # 胆小勿入
# plt.figure()
plt.subplot(2, 1, 1)
plt.plot(index[mintime:maxtime], data[mintime:maxtime], linewidth=1.1, color='r')
plt.xlabel('time (s)')
plt.ylabel('microvolts (uV)')
plt.title("Raw signal")
plt.subplot(2, 1, 2)
plt.plot(index[mintime:maxtime], datarec[mintime:maxtime - 1], linewidth=1.1, color='r')
plt.xlabel('time (s)')
plt.ylabel('microvolts (uV)')
plt.title("De-noised signal using wavelet techniques")plt.tight_layout()
plt.show()

三、结果展示

这篇关于白话机器学习4:小波分解的原理与Python代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979911

相关文章

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI