【机器学习】 人工智能和机器学习辅助决策在空战中的未来选择

2024-05-11 13:04

本文主要是介绍【机器学习】 人工智能和机器学习辅助决策在空战中的未来选择,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🚀传送门

    • 🚀文章引言
    • 🔒技术层面
    • 📕作战结构
    • 🌈替代决策选项
      • 🎬选项 1:超级战争(Hyperwar)
      • 🌠选项 2:超越OODA
      • 🌂选项 3:阻止其他人的决策
    • ⭐结论


在这里插入图片描述

🚀文章引言

空战既涉及技术,又受技术影响。所使用的技术限制了空军可能采取的行动,既授权又限制了部队的使用选择。鉴于此,新兴主要技术总是会吸引人们的极大兴趣,而今天的焦点是人工智能(AI)。

本文只讨论AI在决策中的作用,特别是在空战中的作用。本文首先讨论了这项技术,然后指出了作战结构,最后考虑了人工智能和机器学习辅助空战决策的三种替代方法。
在这里插入图片描述

🔒技术层面

现代人工智能已经发展到满足商业领域,尤其是消费者的需求。一个关键的进步是低成本图形处理单元 (GPU) 变得容易获取,主要是为了满足视频游戏的需求。凭借其大规模的并行处理,GPU 可以轻松运行机器学习软件。机器学习是一个较老的概念,但它需要结合GPU和对 "大数据 "库的访问,以使其在大规模的情况下变得实用和可负担。

在这里插入图片描述

机器学习中,计算机算法,而不是外部人类计算机程序员,创建了人工智能用来解决问题的指令序列和规则。一般来说,用于训练算法的数据越多,设计的规则和指令就越好。鉴于此,具有机器学习功能的 AI 可能会在“工作中”自学,随着它不断获得更多经验,在某项任务中逐渐变得更好。

在许多情况下,这些数据来自一个由互连设备组成的大规模网络,这些设备从现场收集信息,然后通过无线“云”将其传输到远程人工智能计算机进行处理。在军事领域,战场物联网 (IoBT) 以固定和移动设备为特色,包括能够成群协作的无人机。这种 IoBT 网络允许遥感和控制,但会产生大量数据。解决此问题的一种方法是将网络连接到可以实时评估数据的边缘设备,将最重要的信息转发到云中并删除其余信息,从而节省存储和带宽。

现在大多数边缘计算都是使用人工智能芯片完成的。它们体积小、相对便宜、耗电少、热量少,因此可以很容易地集成到智能手机等手持设备和工业机器人等非消费设备中。即便如此,在许多应用程序中,人工智能以混合方式使用:一部分在设备上,一部分在远程融合中心,通过云访问。
在这里插入图片描述

📕作战结构

一些与未来空战相关的重要作战概念正在出现。作战正在从联合转变为现在的多域,即跨越陆地、海洋、空中、网络和空间。一个名为“融合”的概念的意图是,友军应该能够在任何领域内攻击敌方单位。例如,陆军现在将能够在海上与舰船交战,空军将能够在有争议的环境中同时攻击空间资产和无处不在的网络。
在这里插入图片描述
这种作战概念摒弃了传统的单域线性杀伤链,转而采用利用替代或多路径的多域杀伤链。新兴的“马赛克”结构设想跨大型 IoBT 领域的数据流创建一个杀伤链网络,其中实现任务的最佳路径被确定并近乎实时地使用。然后,IoBT 领域的使用是流动的并且不断变化,而不是像旧的杀伤链模型所暗示的那样是固定的数据流。结果是,马赛克概念提供了冗余节点和多个杀伤路径的高度弹性网络。这种跨领域思维现在正在进一步演变为“扩展机动”的概念。

在重大冲突期间,实现这些联锁作战概念以对抗同级对手的复杂性是显而易见的。为了使涉及收敛、镶嵌和扩展机动作战的多领域作战切实可行,需要使用带有机器学习的人工智能自动化系统。

在中短期内,人工智能对涉及此类复杂结构的决策的主要吸引力在于其能够快速识别模式并检测隐藏在 IoBT 收集的大型数据库中的任务。这样做的主要结果是,人工智能将更容易检测、定位和识别整个战场上的物体。隐藏将变得越来越困难,瞄准变得更加容易。另一方面,人工智能并不完美。众所周知,它存在容易被愚弄、脆弱、无法将在一项任务中获得的知识转移到另一项任务以及依赖数据的问题 。

AI 作战主要效用就变成了“发现和愚弄”。具有机器学习功能的 AI 在查找隐藏在高度杂乱背景中的物品方面非常出色,但是由于能够被愚弄,因此缺乏鲁棒性。

“发现”的出发点是将许多低成本的 IoBT 传感器放置在敌对势力可能经过的最佳陆地、海洋、空中、太空和网络位置。未来的战场空间可能包含数百甚至数千个中小型固定和移动人工智能监视和侦察系统,在所有领域运行。同时,可能有同等数量的支持人工智能的干扰和欺骗系统协同作用,试图在对手的脑海中制造一种虚假的、故意误导的战场印象。

🌈替代决策选项

人工智能和机器学习决策自选项将受到技术和所需作战概念的需求影响。这里讨论的替代方案是使用技术能够更快地对对手的行动做出反应,通过技术驱动先发制人抢在对手前面,或者显著减慢对手的决策速度。

🎬选项 1:超级战争(Hyperwar)

自AI 以机器速度提供战争愿景。John Allen 和 Amir Husain 认为 AI 可以实现超级战争,其中:“战争范围战术端的战斗速度将大大加快,将决策-行动周期缩短到几分之一秒,导致具有更多自主决策-行动并发性的一方获得决定性的优势。”

在这里插入图片描述
在空战决策的情况下,著名的观察-定向-决策-行动(OODA)模型提供了一个有用的框架来理解这个想法。该模型的设计师约翰博伊德主张更快地做出决策,以便进入对手的决策周期。这会扰乱敌方指挥官的思维,造成危险的局面,并阻碍他们适应现在瞬息万变的环境(Fadok 1997, p.364-368)。在“观察”功能中,人工智能将用于大多数 IoBT 设备的边缘计算,然后再次用于中央指挥中心,将传入的 IoBT 数据融合成一张综合图景。对于“定向”而言,人工智能将在战斗管理系统中发挥重要作用(Westwood 2020, 22)。人工智能不仅可以生成全面的近实时空中画面,还可以预测敌方空中机动路线。
在这里插入图片描述

下一个 AI 层处理“决策”以了解友方防空部队的可用性,将传递给人类指挥官以批准要交战的接近敌方空中目标的优先列表、采用的多域攻击的最佳类型、所涉及的时间以及任何消除冲突的考虑。人类将在必要时保持在环或在环控制,不仅是出于武装冲突法的原因,而且因为人工智能可能会犯错误,需要在做出任何不可逆转的决定之前进行检查。经人工批准后,“行动”人工智能层将自动向每个目标分配首选武器,并自动传递必要的目标数据,确保与友军解除冲突,确认目标何时被交战并可能下令重新补给武器。

🌠选项 2:超越OODA

OODA 人工智能技术正在迅速扩散,这使得友方和敌方部队都可能同样具备超级战争的能力。OODA 决策模型可能需要改变。据此,在事件发生之前不能进行观察;该模型天生就会在时间上向后看。人工智能可以带来微妙的转变。将合适的环境数字模型和敌对力量与来自 IoBT 的高质量“发现”数据相结合,人工智能可以预测对手可能采取的未来行动范围,并据此预测友军可能采取最好的行动来应对这些。
在这里插入图片描述

人工智能和机器学习辅助决策模型可能是“感知-预测-同意-行动”:人工智能感知环境以寻找敌方和友军;人工智能预测敌军在不久的将来可能会做什么,并就最佳友军反应提出建议;人机团队中的人类部分同意;人工智能通过向部署在战场上的各种支持人工智能的系统发送机器对机器的指令来发挥作用。在这种决策选项下,友军的目标是抢占主动权并在敌军之前采取行动。

它是一种高度计算的持续战术级别的先发制人形式。人工智能将更容易检测、定位和识别整个战场上的物体。隐藏将变得越来越困难,瞄准变得更加容易。

🌂选项 3:阻止其他人的决策

试图更快地做出友军决策的另一种方法是尝试减慢对手的决策速度。在空战中,攻击者需要大量关于目标及其防御的信息才能成功发动空袭。

为了防止这种情况,支持人工智能的“傻瓜”系统可以分散在战场上,无论是物理空间还是网络空间。广泛分散的小型移动边缘计算系统可以通过传输一系列不同保真度的信号来创建复杂的电子诱饵模式。这些系统可能安装在无人机上以获得最大的机动性,尽管使用道路网络的无人驾驶地面车辆也可能对特定功能有用,例如伪装成移动 SAM 系统。其目的是通过建立一个误导性的或至少是混乱的战场画面来击败对手的“发现”系统。

人工智能“傻瓜”系统也可以与复杂的欺骗行动结合使用。例如,几架无人机都在主动发送友军战斗机电子签名的噪声传真,这样它们就可以起飞了。当大量战斗机突然空降时,敌手就会不确定哪些是真的,哪些不是。

⭐结论

在这里插入图片描述

这三个选项在决策方面提供了真正的选择。也许与最初的看法不一致,超级战争的概念最有可能涉及一系列多域共同或曲折攻击,而不是连续流线式行动。物理限制意味着需要时间来重新武装、补充燃料和重新定位自己的部队机器以进行后续攻击。

另一方面,OODA 之外的选项可能更像是一个持续的行动,因为它有效地遵循了详细的计划,尽管由 IoBT 战场空间感知提供信息。这样的决策结构可能适合主动防御,它吸收了第一次攻击,从中学习,然后以预定的方式进行攻击。鉴于 AI 的处理速度,响应将在启动前立即确定,从而从 AI 的“在职”机器学习中获得最大价值。

最后,阻止他人的决策选项为防御者提供了很大的希望,但需要在使用的监视和侦察系统以及所涉及的人类认知方面对对手有很好的了解。它似乎最适合冻结冲突的情况,在这种情况下,“傻瓜”系统可以被最佳地放置,环境非常容易理解,并且面对的是单一的对手。这一选择可能不太适合那些迅速部署到遥远战区且对局势了解有限的部队。
在这里插入图片描述

首选的选项将取决于具体情况,但强调并非所有在冲突中使用人工智能的人都可能以相同的方式使用相同的技术,即使在狭窄的决策领域也是如此。毫无疑问,更重要的是人工智能将在短期内显著改变空战决策。

  • 最后,愿世界和平!!!!
    在这里插入图片描述

这篇关于【机器学习】 人工智能和机器学习辅助决策在空战中的未来选择的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979612

相关文章

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

如何选择适合孤独症兄妹的学校?

在探索适合孤独症儿童教育的道路上,每一位家长都面临着前所未有的挑战与抉择。当这份责任落在拥有孤独症兄妹的家庭肩上时,选择一所能够同时满足两个孩子特殊需求的学校,更显得尤为关键。本文将探讨如何为这样的家庭做出明智的选择,并介绍星贝育园自闭症儿童寄宿制学校作为一个值得考虑的选项。 理解孤独症儿童的独特性 孤独症,这一复杂的神经发育障碍,影响着儿童的社交互动、沟通能力以及行为模式。对于拥有孤独症兄

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]