【智能算法】正切搜索算法(TSA)原理及实现

2024-05-11 06:12

本文主要是介绍【智能算法】正切搜索算法(TSA)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献
    • 5.代码获取


1.背景

2022年,A Layeb受到正切函数启发,提出了正切搜索算法(Tangent Search Algorithm, TSA)。

在这里插入图片描述

在这里插入图片描述

2.算法原理

2.1算法思想

TSAT基于正切函数的数学模型将给定的解决方案移动到更好的解决方案,提出了切线飞线函数,其具有平衡开发与勘探搜索的优点。

在TSA中,所有的运动方程都由一个全局阶跃控制,其形式为 s t e p ∗ t a n ( θ ) step*tan(\theta) steptan(θ),类似于levy飞行函数,称为正切飞行

无论是基于导数还是无导数的最优算法都是基于如下的下降方程:
X t + 1 = X t + step ∗ d (1) X^{t+1}=X^t+\text{ step}*d\tag{1} Xt+1=Xt+ stepd(1)
其中step是移动的大小,d是移动的方向。
切线飞行乘以一个递减对数函数的行为。探索搜索在早期迭代中很大,在最后迭代中减少。TSA由三个主要部分组成:强化搜索、探索搜索和逃离局部最小。探索阶段的目的是很好地探索搜索空间并找到最有希望的候选对象。而强化分量则用于将搜索过程导向种群中当前的最佳解。最后,在随机搜索代理(解)的每次迭代中应用逃离局部最小值过程,以避免陷入局部最小值。
在这里插入图片描述

2.2算法过程

强化搜索

在强化搜索中,TSA首先进行随机局部行走,然后将得到的解中的一些变量替换为当前最优解中对应变量的值。对于大于4的问题,替换变量的比例等于20%,对于小于或等于4个变量的问题,替换变量的比例等于50%。
X i t + 1 = X i t + s t e p ∗ tan ⁡ ( θ ) ∗ ( X i t − o p t S i t ) X i t + 1 = o p t S i t if variable i is selected (2) X_i^{t+1}=X_i^t+step*\tan(\theta)*\left(X_i^t-optS_i^t\right)\\X_i^{t+1}=optS_i^t\text{ if variable i is selected}\tag{2} Xit+1=Xit+steptan(θ)(XitoptSit)Xit+1=optSit if variable i is selected(2)

探索搜索

TSA使用变步长与切线飞行的乘积来进行全局随机游动。正切函数有助于有效地探索搜索空间。h接近于/2会使正切值变大,得到的解会远离当前解,而h接近于0会使正切函数的值变小,得到的解会接近当前解。因此,探索搜索方程在全局随机漫步和局部随机漫步之间合并。将探索搜索方程应用于每个变量,其概率为1/D,其中D为问题的维度。
X i t + 1 = X i t + s t e p ∗ tan ⁡ ( θ ) (3) X_i^{t+1}=X_i^t+\mathrm{step}*\tan(\theta)\tag{3} Xit+1=Xit+steptan(θ)(3)
强化搜索和探索搜索是根据给定的概率进行的,称为Pswitch。

在这里插入图片描述

逃离局部最小

为了避免局部最小停滞问题,TSA采用了一种机制通过使用如图所示的特定程序来处理这个问题,这个过程有两个部分以一定的概率执行。
X = X + R . ∗ ( o p t S − r a n d ∗ ( o p t S − X ) ) X = X + tan ⁡ ( tan ⁡ ) ∗ ( u b − l b ) (4) \begin{aligned}&X =X + R.*(\mathrm{opt}S- \mathrm{rand}*(\mathrm{opt}S-X))\\&X = X+ \tan(\tan)*(\mathrm{ub}-\mathrm{lb})\end{aligned}\tag{4} X=X+R.(optSrand(optSX))X=X+tan(tan)(ublb)(4)

在这里插入图片描述
与许多优化算法相比,TSA使用的参数较少,Pswitch, Pesc和step, h是强调开发和探索搜索的主要参数。TSA在早期采用较大的步长,随着搜索过程的进行,步长在迭代过程中呈非线性减小。切线飞行除了对步长有很大的影响外,还使其具有振荡性和周期性。为了适应挖掘和强化搜索过程,TSA采用了基于对数函数的自适应步长非线性递减格式。TSA使用两种步长变量,在强化搜索中使用第一个步长变量:
s t e p 1 = 10 ∗ s i g n ( r a n d − 0.5 ) ∗ n o r m ( o p t S ) ∗ l o g ( 1 + 10 ∗ dim ⁡ / t ) (5) \begin{array}{c}\mathrm{step}1=10*\mathrm{sign}(\mathrm{rand}-0.5)*\mathrm{norm}(\mathrm{opt}S)*\mathrm{log}(1+10*\dim/t)\end{array}\tag{5} step1=10sign(rand0.5)norm(optS)log(1+10dim/t)(5)
在探索搜索中,步长为:
s t e p 2 = 1 ∗ s i g n ( r a n d − 0.5 ) ∗ n o r m ( o p t S − X ) / l o g ( 20 + t ) (6) \begin{aligned}\mathrm{step}2=1*\mathrm{sign}(\mathrm{rand}-0.5)*\mathrm{norm}(\mathrm{opt}S-X)/\mathrm{log}(20+t)\end{aligned}\tag{6} step2=1sign(rand0.5)norm(optSX)/log(20+t)(6)
norm()是欧几里得范数,X是当前解,optS是当前最佳解,用于引导搜索过程走向最佳解。

流程图

在这里插入图片描述

3.结果展示

使用测试框架,测试TSA性能 一键run.m

  • 【智能算法】省时方便,智能算法统计指标——一键运行~

CEC2017-F20
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Layeb A. Tangent search algorithm for solving optimization problems[J]. Neural Computing and Applications, 2022, 34(11): 8853-8884.

5.代码获取

这篇关于【智能算法】正切搜索算法(TSA)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/978728

相关文章

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J