杭电1575-Tr A(矩阵快速幂)

2024-05-11 03:48
文章标签 快速 矩阵 杭电 tr 1575

本文主要是介绍杭电1575-Tr A(矩阵快速幂),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Tr A

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1872    Accepted Submission(s): 1382


Problem Description
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
 

Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
 

Output
对应每组数据,输出Tr(A^k)%9973。
 

Sample Input
  
2 2 2 1 0 0 1 3 99999999 1 2 3 4 5 6 7 8 9
 

Sample Output
  
2 2686
这题是一道纯矩阵快速幂题!
下面我说明下矩阵快速幂的原理(网上搜的见谅):

矩阵的快速幂是用来高效地计算矩阵的高次方的。将朴素的o(n)的时间复杂度,降到log(n)。

这里先对原理(主要运用了矩阵乘法的结合律)做下简单形象的介绍:

一般一个矩阵的n次方,我们会通过连乘n-1次来得到它的n次幂。

但做下简单的改进就能减少连乘的次数,方法如下:

把n个矩阵进行两两分组,比如:A*A*A*A*A*A  =>  (A*A)*(A*A)*(A*A)

这样变的好处是,你只需要计算一次A*A,然后将结果(A*A)连乘自己两次就能得到A^6,即(A*A)^3=A^6。算一下发现这次一共乘了3次,少于原来的5次。

其实大家还可以取A^3作为一个基本单位。原理都一样:利用矩阵乘法的结合律,来减少重复计算的次数。

以上都是取一个具体的数来作为最小单位的长度,这样做虽然能够改进效率,但缺陷也是很明显的,取个极限的例子(可能有点不恰当,但基本能说明问题),当n无穷大的时候,你现在所取的长度其实和1没什么区别。所以就需要我们找到一种与n增长速度”相适应“的”单位长度“,那这个长度到底怎么去取呢???这点是我们要思考的问题。

有了以上的知识,我们现在再来看看,到底怎么迅速地求得矩阵的N次幂。

既然要减少重复计算,那么就要充分利用现有的计算结果咯!~怎么充分利用计算结果呢???这里考虑二分的思想。。

大家首先要认识到这一点:任何一个整数N,都能用二进制来表示。。这点大家都应该知道,但其中的内涵真的很深很深(这点笔者感触很深,在文章的最后,我将谈谈我对的感想)!!

计算机处理的是离散的信息,都是以0,1来作为信号的处理的。可想而知二进制在计算机上起着举足轻重的地位。它能将模拟信号转化成数字信号,将原来连续的实际模型,用一个离散的算法模型来解决。  好了,扯得有点多了,不过相信这写对下面的讲解还是有用的。

回头看看矩阵的快速幂问题,我们是不是也能把它离散化呢?比如A^19  =>  (A^16)*(A^2)*(A^1),显然采取这样的方式计算时因子数将是log(n)级别的(原来的因子数是n),不仅这样,因子间也是存在某种联系的,比如A^4能通过(A^2)*(A^2)得到,A^8又能通过(A^4)*(A^4)得到,这点也充分利用了现有的结果作为有利条件。下面举个例子进行说明:

现在要求A^156,而156(10)=10011100(2) 

也就有A^156=>(A^4)*(A^8)*(A^16)*(A^128)  考虑到因子间的联系,我们从二进制10011100中的最右端开始计算到最左端。细节就说到这,下面给核心代码:

核心代码我自己写的,不是网上搜的,而且加注了详细解释:
Matrix matrix_quick_power(matrix a,int k)//重点:矩阵快速幂
{int i;matrix b;memset(b.mat,0,sizeof(b.mat));//初始化for(i=1;i<=n;i++)//这里把b化为单位矩阵,这样如果是第一次乘的话就不会改变a的值b.mat[i][i]=1;while(k)//当k即幂的大小为0时退出循环{if(k&1)//当K为奇数,这里用二进制的“与符号”:&,等同于k%2!=0{b=matrix_mul(a,b);//如果是第一次就乘上单位矩阵不变,不是的话就成上幂的因子数k-=1;}else{a=matrix_mul(a,a);//幂的因子数k>>=1;}}return b;//因为最终k变为0时的前一次k一定为1所以返回b而不是a
}
废话不多说了
下面是这题的AC代码和注解:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
const int MAX=101;
int n;
using namespace std;
typedef struct Matrix
{int mat[MAX][MAX];//定义矩阵
}matrix;
matrix A,B;
Matrix matrix_mul(matrix a,matrix b)//矩阵乘法
{matrix c;memset(c.mat,0,sizeof(c.mat));int i,j,k;for(i=1;i<=n;i++){for(j=1;j<=n;j++){for(k=1;k<=n;k++){c.mat[i][j]+=a.mat[i][k]*b.mat[k][j];c.mat[i][j]%=9973;//每次加完要对9973取模}}}return c;
}
Matrix matrix_quick_power(matrix a,int k)//重点:矩阵快速幂
{int i;matrix b;memset(b.mat,0,sizeof(b.mat));//初始化for(i=1;i<=n;i++)//这里把b化为单位矩阵,这样如果是第一次乘的话就不会改变a的值b.mat[i][i]=1;while(k)//当k即幂的大小为0时退出循环{if(k&1)//当K为奇数,这里用二进制的“与符号”:&,等同于k%2!=0{b=matrix_mul(a,b);//如果是第一次就乘上单位矩阵不变,不是的话就成上幂的因子数k-=1;}else{a=matrix_mul(a,a);//幂的因子数k>>=1;}}return b;//因为最终k变为0时的前一次k一定为1所以返回b而不是a
}
int main()
{int i,j,sum,k,t;cin>>t;while(t--){cin>>n>>k;for(i=1;i<=n;i++){for(j=1;j<=n;j++){cin>>A.mat[i][j];A.mat[i][j]%=9973;//这里也要取模不然矩阵相乘时会溢出}}B=matrix_quick_power(A,k);sum=0;for(i=1;i<=n;i++){sum+=B.mat[i][i];sum%=9973;//同理取模}cout<<sum<<endl;}return 0;
}


这篇关于杭电1575-Tr A(矩阵快速幂)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/978417

相关文章

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

Python如何快速下载依赖

《Python如何快速下载依赖》本文介绍了四种在Python中快速下载依赖的方法,包括使用国内镜像源、开启pip并发下载功能、使用pipreqs批量下载项目依赖以及使用conda管理依赖,通过这些方法... 目录python快速下载依赖1. 使用国内镜像源临时使用镜像源永久配置镜像源2. 使用 pip 的并

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C