结合创新!通道注意力+UNet,实现高精度分割

2024-05-11 02:52

本文主要是介绍结合创新!通道注意力+UNet,实现高精度分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在U-Net网络中加入通道注意力机制能显著提升模型的性能!

具体点说是在U-Net的卷积层之后添加一个通道注意力模块,这样这个模块可以学习不同通道之间的权重,并根据这些权重对通道进行加权,从而增强重要通道的特征表示。

这种结合通道注意力的U-Net网络模型对比传统模型,更能捕获图像中的关键信息,并提高模型的分割精度与泛化能力,在面对新的、未见过的图像时也能保持较高的性能。这也是为什么它一直是研究的热点和趋势所在。

本文挑选了9个结合通道注意力+U-Net最新结合方案,可借鉴的方法和创新点做了简单提炼,原文和已开源的代码都整理了,方便同学们学习和复现。

SE-SWIN UNET FOR IMAGE SEGMENTATION OF MAJOR MAIZE FOLIAR DISEASES

方法:论文提出了一个改进的Swin-Unet模型,它结合了通道注意力,专门用于智能农业领域中快速且准确地分割玉米叶片病斑区域的问题。该模型通过引入SENet模块和改进损失函数,在全局和局部学习中应用Swin Transformer模块和跳跃连接结构。在每个跳跃连接处,引入SENet模块通过通道注意力关注全局目标特征,以突出玉米叶病重要区域并抑制无关背景区域。

创新点:

  • 引入了SENt模块:在每个跳跃连接中引入了SENt模块,通过通道注意机制加权特征图,提高了模型捕捉细节和空间信息的能力,并进一步增强了模型的分割性能。

  • 改进了损失函数:提出了基于二进制交叉熵和Dice损失函数的混合损失函数,构建了语义分割模型,相比其他传统卷积神经网络,在相同数据集上取得了更高的交并比、准确率和F1得分。

  • 与同一数据集上的其他传统卷积神经网络相比,SE-Swin Unet在交并比(Intersection over Union, IoU)、准确度(accuracy)和F1分数(F1-score)上取得了更高的平均结果,分别为84.61%、92.98%和89.91%。

Optimizing ensemble U‑Net architectures for robust coronary vessel segmentation in angiographic images

方法:论文提出了一种结合了通道注意力的UNet网络架构,称为SE-RegUNet,以增强特征提取。目的是精确地分割冠状血管。作者通过改进模型架构和优化图像预处理,结合高准确性、广泛适用性和临床效率,推动医学诊断技术的进步。

创新点:

  • SE-RegUNet模型通过引入RegNet编码器和挤压激励块,实现了精确的冠状血管分割。

  • 作者提出了一种新颖的两步预处理技术,用于改善噪声和低对比度的血管造影图像的质量。

  • SE-RegUNet模型在效率和推理方面表现出色,并通过使用公开可用的血管造影数据集进行推理,验证了其泛化能力。

A Semantic Segmentation Method Based on AS-Unet++ for Power Remote Sensing of Images

方法:论文提出了一种基于新型AS-Unet++的语义分割方法,以实现基于遥感图像的输电线路的自动规划。在AS-Unet++中增加了ASPP和SE模块,提高了神经网络提取重要特征信息和捕捉多尺度上下文信息的能力。AS-Unet++的每个层次的特征提取部分都堆叠在一起,减少了多个AS-Unet的训练量。

创新点:

  • AS-Unet++结构:在传统Unet的基础上添加了ASPP和SE模块,扩展了感知领域并增强了重要特征的能力。AS-Unet++通过将AS-Unet的各层特征提取部分堆叠在一起,减少了多个AS-Unet的训练量。相比Unet,AS-Unet++减少了训练参数的数量。

  • 实验结果表明,AS-Unet++相较于Unet在整体识别准确度上有显著提升,具体在房屋、道路、森林和湖泊元素的识别中均表现出较高的精度、召回率和IoU指数增长。

SEA-NET: medical image segmentation network based on spiral squeeze-and-excitation and attention modules

方法:论文提出了一种新的基于UNet的医学图像分割模型,该模型结合了挤压激励模块和注意力模块,形成了一个螺旋闭合路径。应用于医学图像分割任务。

创新点:

  • SEA-Net模型:提出了一种名为SEA-Net的扩展U-Net模型,利用了压缩和扩展模型以及注意力模型。该模型应用于两个不同的医学图像数据集,包括脑MRI数据集LPBA40和外周血涂片数据集。

  • Tversky损失函数:针对医学图像中的数据不平衡问题,本文在交叉熵损失函数的基础上添加了Tversky损失函数。Tversky系数是Dice系数和Jaccard系数的广义函数,可以解决数据不平衡的问题。通过调整Tversky系数的值,可以控制误报和漏报之间的权衡。

  • 注意力路径:本文添加的注意力路径不仅用于在解码路径中进行深度语义融合,还可以抑制医学图像中的噪音。通过使用深度语义信息来调整目标区域和非目标区域的权重比例,突出目标区域,并为模型提供更有用的特征信息。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“通道分割”获取全部论文+代码

码字不易,欢迎大家点赞评论收藏

这篇关于结合创新!通道注意力+UNet,实现高精度分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/978305

相关文章

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

使用Apache POI在Java中实现Excel单元格的合并

《使用ApachePOI在Java中实现Excel单元格的合并》在日常工作中,Excel是一个不可或缺的工具,尤其是在处理大量数据时,本文将介绍如何使用ApachePOI库在Java中实现Excel... 目录工具类介绍工具类代码调用示例依赖配置总结在日常工作中,Excel 是一个不可或缺的工http://

SpringBoot实现导出复杂对象到Excel文件

《SpringBoot实现导出复杂对象到Excel文件》这篇文章主要为大家详细介绍了如何使用Hutool和EasyExcel两种方式来实现在SpringBoot项目中导出复杂对象到Excel文件,需要... 在Spring Boot项目中导出复杂对象到Excel文件,可以利用Hutool或EasyExcel

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常

Golang中map缩容的实现

《Golang中map缩容的实现》本文主要介绍了Go语言中map的扩缩容机制,包括grow和hashGrow方法的处理,具有一定的参考价值,感兴趣的可以了解一下... 目录基本分析带来的隐患为什么不支持缩容基本分析在 Go 底层源码 src/runtime/map.go 中,扩缩容的处理方法是 grow

Go 1.23中Timer无buffer的实现方式详解

《Go1.23中Timer无buffer的实现方式详解》在Go1.23中,Timer的实现通常是通过time包提供的time.Timer类型来实现的,本文主要介绍了Go1.23中Timer无buff... 目录Timer 的基本实现无缓冲区的实现自定义无缓冲 Timer 实现更复杂的 Timer 实现总结在

基于Python实现多语言朗读与单词选择测验

《基于Python实现多语言朗读与单词选择测验》在数字化教育日益普及的今天,开发一款能够支持多语言朗读和单词选择测验的程序,对于语言学习者来说无疑是一个巨大的福音,下面我们就来用Python实现一个这... 目录一、项目概述二、环境准备三、实现朗读功能四、实现单词选择测验五、创建图形用户界面六、运行程序七、

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计