魔性的float浮点数精度问题

2024-05-10 18:48

本文主要是介绍魔性的float浮点数精度问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从一个问题引入

如果你以前接触过C语言,那么对下面的这段代码一定很熟悉:

#include <stdio.h>int main(void)
{float f_num1 = 21.75;float f_num2 = 13.45;printf("f_num1 = %f\n", f_num1);printf("f_num2 = %f\n", f_num2);printf("f_num1 + f_num2 = %f\n", f_num1 + f_num2);return 0;
}

相信很多人不用运行,能够直接报出答案, f_num1 = 21.75, f_num2 = 13.45, f_num1 + f_num2 = 35.2,无论是从常识还是理论角度都不难理解。
下面我们运行一下程序,验证我们的猜测正不正确:

f_num1 = 21.750000
f_num2 = 13.450000
f_num1 + f_num2 = 35.200001

f_num1f_num2的结果和我们预想的一样,之所以后面多了四个0,是因为%f默认保留6位有效数字。但是f_num1 + f_num2的结果是什么鬼,这个35.200001是从哪里来的?
是不是一下子颠覆了我们的认知?
惊不惊喜,意不意外,刺不刺激?是不是发现自从学了C语言,连简单的算术都不会算了?
别急,还有更令你崩溃的。

如果是C++呢

下面我们看看以上程序的C++版本:

#include<iostream>
using namespace std;int main(void)
{float f_num1 = 21.75;float f_num2 = 13.45;cout << "f_num1 = " << f_num1 << endl;cout << "f_num2 = " << f_num2 << endl;cout << "f_num1 + f_num2 = " << f_num1 + f_num2 << endl;return 0;
}

直接来看输出结果吧:

f_num1 = 21.75
f_num2 = 13.45
f_num1 + f_num2 = 35.2

很神奇是不是?因为这个结果看起来正常多了。
看到这里,相信我们的心里都有老大一个疑问:为什么C程序和C++程序对同样的数字处理,输出的结果却不一样的?cout到底做了些什么?

cout的神奇之处

为了验证cout对浮点数的处理,我们不妨看一下下面的程序:

#include <iostream>
using namespace std;int main(void)
{float num1 = 5;float num2 = 5.00;float num3 = 5.14;float num4 = 5.140000;float num5 = 5.123456;float num6 = 5.987654321;cout << "num1 = " << num1 << endl;cout << "num2 = " << num2 << endl;cout << "num3 = " << num3 << endl;cout << "num4 = " << num4 << endl;cout << "num5 = " << num5 << endl;cout << "num6 = " << num6 << endl;return 0;
}

看结果来分析比较直观,运行以上程序,结果如下:

num1 = 5
num2 = 5
num3 = 5.14
num4 = 5.14
num5 = 5.12346
num6 = 5.98765

num1num2num3num4这两组结果可以知道,cout对于float类型数值小数点后面的0是直接省去了的(这点和C语言格式化输出的%g有点像)。
num5num6两组结果不难分析出,cout对于浮点型数值,最多保留6位有效数字。
以上是cout处理浮点数时的特点,应该记住。
事实上,我们使用iostream库里的cout.setf不难使cout恢复精度。我们对上面的代码修改如下:

#include<iostream>
using namespace std;int main(void)
{float f_num1 = 21.75;float f_num2 = 13.45;cout.setf(ios_base::fixed, ios_base::floatfield);       cout << "f_num1 = " << f_num1 << endl;cout << "f_num2 = " << f_num2 << endl;cout << "f_num1 + f_num2 = " << f_num1 + f_num2 << endl;return 0;
}

输出的结果就与C语言版本一模一样了:

f_num1 = 21.750000
f_num2 = 13.450000
f_num1 + f_num2 = 35.200001

答案呼之欲出

文章写到这里,相信你已经看出来问题的所在了。
不错,之所以结果不一样,正是由于精度引起的!
让我们回顾一下官方教材里关于float精度的描述:

浮点型和表示单精度、双精度和扩展精度值。C++标准指定了一个浮点数有效位数的最小值,然而大多数编译器都实现了更高的精度。 通常,float以一个字(32比特)来表示,double以2个字(64比特)来表示,long double 以3或4个字(96或128比特)来表示。一般来说,类型floatdouble分别有7和16个有效位;类型long double则常常被用于有特殊浮点需求的硬件,它的具体实现不同,精度也各不相同。(《C++ Primer第五版》

由以上描述,我们不难知道,对于float来说,最多只有7个有效位,这也就意味着,当实际存储的精度大于float的精度范围时,就会出现精度丢失现象。
为了进一步佐证上述问题,我们不妨将float的数值放大10亿倍,看看里面存储的值到底是多少:

#include<iostream>
using namespace std;int main(void)
{float f_num1 = 21.75;float f_num2 = 13.45;cout.setf(ios_base::fixed, ios_base::floatfield);int billion = 1E9;float f_num10 = f_num1 * billion;float f_num20 = f_num2 * billion;cout << "f_num1 = " << f_num1 << endl;cout << "f_num2 = " << f_num2 << endl;cout << "f_num10 = " << f_num10 << endl;cout << "f_num20 = " << f_num20 << endl;return 0;
}

以上程序运行结果如下:

f_num1 = 21.750000
f_num2 = 13.450000
f_num10 = 21749999616.000000
f_num20 = 13449999360.000000

由此我们不难推断,21.75在实际存储时,并不是存储的21.75,而是21.749999616,同样的,12.45存储的是12.449999360,这样计算出来之后自然就会造成结果的不正确。

再看一个例子

我们再来看一个精度丢失造成运算结果不正确的例子。

#include<iostream>
using namespace std;int main(void)
{float num1 = 2.3410E23;float num2 = num1 + 1.0f;cout << "num2 - num1 = " << num2 - num1 << endl;return 0;
}

如果精度不丢失,运算结果应该为1才对,可是因为精度丢失,导致最后的加1实际和没加效果一样,计算出来的结果是0。

num2 - num1 = 0

怎么解决

那么,既然float有这么多稀奇古怪的问题,应该怎么去解决和避免呢?

首先,当然推荐大家在编程时尽量使用高精度的浮点类型

比如double就比float精度要高,很多时候,使用double能够避免很多问题,比如本文一开始提到的问题,如果使用double就能完美解决:

#include <stdio.h>int main(void)
{double f_num1 = 21.75;double f_num2 = 13.45;printf("f_num1 = %lf\n", f_num1);printf("f_num2 = %lf\n", f_num2);printf("f_num1 + f_num2 = %lf\n", f_num1 + f_num2);return 0;
}

大家可以自己运行一下看看结果。
double类型可以解决大部分精度丢失问题,基本上满足日常使用了,但是仍然不能避免精度丢失(double也有精度限制),这时候就需要想另外的方法来解决了。

万能的cout

前面提到过,cout其实是可以解决这种精度丢失问题的,所以如果不是对效率要求过高或者要求格式化输出(其实cout也可以实现格式化输出,此处不详细展开)必须使用printf,在编写C++程序时,建议使用cout代替printf

写在最后

本文只是简单的介绍了一下浮点型数值的精度问题,如果要深入细究,肯定不止这么多内容,比如浮点型数值在内存中是如何存储的?在字节里是如何分布 的?这才是真正核心的原理部分。在这里只浅尝辄止地讲述了一下,但相信阅读者已经对精度问题有了一个初步的认识。

这篇关于魔性的float浮点数精度问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/977264

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2