TCP漫谈之keepalive

2024-05-10 17:48
文章标签 tcp keepalive 漫谈

本文主要是介绍TCP漫谈之keepalive,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

tcp是一个有状态通讯协议,所谓的有状态是指通信过程中通信的双方各自维护连接的状态。
先简单回顾一下TCP的连接建立和断开的整个过程。这里主要考虑主流程(关于丢包、拥塞、窗口、失败重试等情况后面详细讨论),首先是客户端发送syn(Synchronize Sequence Numbers:同步序列编号)包给服务端,告诉服务端我要连接你,syn包里面主要携带了客户端的seq序列号。服务端回发一个syn+ack,其中syn包和客户端原理类似,只不过携带是服务端的seq序列号,ack包则是确认客户端允许连接。最后客户端再次发送一个ack确认接收到服务端的syn包。这样客户端和服务端就可以建立连接了。整个流程成为三次握手。

在这里插入图片描述
在这里插入图片描述
建立连接后,客户端或者服务端便可以通过已建立的socket连接发送数据,对端接收数据后,便可以通过ack确认已经收到数据。
数据交换完毕后,通常是客户端便可以发送FIN包,告诉另一端我要断开了。另一端先是通过ACK确认收到FIN包,然后发送FIN包,告诉客户端我也关闭了。最后客户端回应ACK确认连接终止。整个流程成为四次挥手。
Tcp的性能经常为大家诟病,除了TCP+IP额外的header以外。它建立连接需要三次握手,关闭连接需要四次挥手。如果只是发送很少的数据,那么传输的有效数据是非常少的。那么是不是建立一次连接后续可以继续复用呢?的确可以这样做,但又带来另一个问题,如果连接一直不释放,端口被占满了咋办。为此引入了今天讨论的第一个话题tcp keepalive。所谓的Tcp 的keepalive是指tcp连接建立后会通过keepalive的方式一直保持,不会在数据传输完成后立刻中断,而是通过keepalive机制检测连接状态。
linux控制keepalive有三个参数。保活时间net.ipv4.tcp_keepalive_time、保活时间间隔net.ipv4.tcp_keepalive_intvl、保活探测次数net.ipv4.tcp_keepalve_probes,默认值分别是 7200 秒(2 小时)、75 秒和 9 次探测。如果使用 TCP 自身的 keep-Alive 机制,在 Linux 系统中,最少需要经过 2 小时 + 9*75 秒后断开。譬如我们SSH登录一台服务器后可以看到
在这里插入图片描述
可以看到这个tcp的keepalive时间是2个小时。并且会在2个小时候发送探测包。确认对端是否处于连接状态。
之所以会讨论tcp的keepalive是因为发现服器上面有泄露的tcp连接

# ll /proc/11516/fd/10
lrwx------ 1 root root 64 Jan  3 19:04 /proc/11516/fd/10 -> socket:[1241854730]
# date
Sun Jan  5 17:39:51 CST 2020

已经建立连接两天,但是对方已经断开了(非正常断开)。由于使用了比较老的go(1.9之前版本有问题)导致连接没有释放。
解决这类问题,可以借助tcp的keepalive机制。新版go语言已经支持在建立连接的时候设置keepalive时间。首先查看网络包中建立tcp连接的方法DialContext方法中

if tc, ok := c.(*TCPConn); ok && d.KeepAlive >= 0 {setKeepAlive(tc.fd, true)ka := d.KeepAliveif d.KeepAlive == 0 {ka = defaultTCPKeepAlive}setKeepAlivePeriod(tc.fd, ka)testHookSetKeepAlive(ka)
}
其中defaultTCPKeepAlive是15s。如果是http连接,使用默认client,那么他会将keepalive时间设置成30s。
var DefaultTransport RoundTripper = &Transport{Proxy: ProxyFromEnvironment,DialContext: (&net.Dialer{Timeout:   30 * time.Second,KeepAlive: 30 * time.Second,DualStack: true,}).DialContext,ForceAttemptHTTP2:     true,MaxIdleConns:          100,IdleConnTimeout:       90 * time.Second,TLSHandshakeTimeout:   10 * time.Second,ExpectContinueTimeout: 1 * time.Second,
}

下面通过一个简单的demo测试一下,代码如下:

func main() {wg := &sync.WaitGroup{}c := http.DefaultClientfor i := 0; i < 2; i++ {wg.Add(1)go func() {defer wg.Done()for {r, err := c.Get("http://x.x.x.x:8080")if err != nil {fmt.Println(err)return}_, err = ioutil.ReadAll(r.Body)r.Body.Close()if err != nil {fmt.Println(err)return}time.Sleep(30 * time.Millisecond)}}()}wg.Wait()
}

执行程序后,可以查看连接。初始设置keepalive为30s。
在这里插入图片描述
然后不断递减,至0后,有会重新获取30s
在这里插入图片描述
整个过程可以通过tcpdump抓包获取

# tcpdump -i bond0 port 35832 -nvv -A

其实很多应用并非是通过tcp 的keepalive机制探活的,因为默认的两个多小时检查时间对于很多实时系统是完全没法满足的,通常的做法是通过应用层的定时监测如PING-PONG机制(就像打乒乓球,一来一回),应用层每隔一段时间发送心跳包,如websocket的ping-pong。

这篇关于TCP漫谈之keepalive的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/977127

相关文章

QT实现TCP客户端自动连接

《QT实现TCP客户端自动连接》这篇文章主要为大家详细介绍了QT中一个TCP客户端自动连接的测试模型,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录版本 1:没有取消按钮 测试效果测试代码版本 2:有取消按钮测试效果测试代码版本 1:没有取消按钮 测试效果缺陷:无法手动停

【Go】go连接clickhouse使用TCP协议

离开你是傻是对是错 是看破是软弱 这结果是爱是恨或者是什么 如果是种解脱 怎么会还有眷恋在我心窝 那么爱你为什么                      🎵 黄品源/莫文蔚《那么爱你为什么》 package mainimport ("context""fmt""log""time""github.com/ClickHouse/clickhouse-go/v2")func main(

2024.9.8 TCP/IP协议学习笔记

1.所谓的层就是数据交换的深度,电脑点对点就是单层,物理层,加上集线器还是物理层,加上交换机就变成链路层了,有地址表,路由器就到了第三层网络层,每个端口都有一个mac地址 2.A 给 C 发数据包,怎么知道是否要通过路由器转发呢?答案:子网 3.将源 IP 与目的 IP 分别同这个子网掩码进行与运算****,相等则是在一个子网,不相等就是在不同子网 4.A 如何知道,哪个设备是路由器?答案:在 A

图解TCP三次握手|深度解析|为什么是三次

写在前面 这篇文章我们来讲解析 TCP三次握手。 TCP 报文段 传输控制块TCB:存储了每一个连接中的一些重要信息。比如TCP连接表,指向发送和接收缓冲的指针,指向重传队列的指针,当前的发送和接收序列等等。 我们再来看一下TCP报文段的组成结构 TCP 三次握手 过程 假设有一台客户端,B有一台服务器。最初两端的TCP进程都是处于CLOSED关闭状态,客户端A打开链接,服务器端

网络原理之TCP协议(万字详解!!!)

目录 前言 TCP协议段格式 TCP协议相关特性 1.确认应答 2.超时重传 3.连接管理(三次握手、四次挥手) 三次握手(建立TCP连接) 四次挥手(断开连接)  4.滑动窗口 5.流量控制 6.拥塞控制 7.延迟应答 8.捎带应答  9.基于字节流 10.异常情况的处理 小结  前言 在前面,我们已经讲解了有关UDP协议的相关知识,但是在传输层,还有

漫谈设计模式 [12]:模板方法模式

引导性开场 菜鸟:老大,我最近在做一个项目,遇到了点麻烦。我们有很多相似的操作流程,但每个流程的细节又有些不同。我写了很多重复的代码,感觉很乱。你有啥好办法吗? 老鸟:嗯,听起来你遇到了典型的代码复用和维护问题。你有没有听说过“模板方法模式”? 菜鸟:模板方法模式?没听过。这是什么? 老鸟:简单来说,模板方法模式让你在一个方法中定义一个算法的骨架,而将一些步骤的实现延迟到子类中。这样,你可

漫谈设计模式 [9]:外观模式

引导性开场 菜鸟:老鸟,我最近在做一个项目,感觉代码越来越复杂,我都快看不懂了。尤其是有好几个子系统,它们之间的调用关系让我头疼。 老鸟:复杂的代码确实让人头疼。你有没有考虑过使用设计模式来简化你的代码结构? 菜鸟:设计模式?我听说过一些,但不太了解。你觉得我应该用哪个模式呢? 老鸟:听起来你的问题可能适合用**外观模式(Facade Pattern)**来解决。我们可以一起探讨一下。

linux下TCP/IP实现简单聊天程序

可以在同一台电脑上运行,在一个终端上运行服务器端,在一个终端上运行客户端。 服务器端的IP地址要和本地的IP相同,并分配端口号,客户端的默认设置为本地,端口号自动分配。 服务器端: #include <stdio.h>#include <stdlib.h>#include <errno.h>#include <string.h>#include <sys/types.

JAVAEE初阶第七节(中)——物理原理与TCP_IP

系列文章目录 JAVAEE初阶第七节(中)——物理原理与TCP_IP 文章目录 系列文章目录JAVAEE初阶第七节(中)——物理原理与TCP_IP 一.应用层重点协议)1. DNS2 .NAT3. NAT IP转换过程 4 .NAPT5. NAT技术的缺陷6. HTTP/HTTPS7. 自定义协议 二. 传输层重点协议 1 .UDP协议 2.1.1 UDP协议端格式 2.1.2 UD

漫谈设计模式 [6]:适配器模式

引导性开场 菜鸟:老鸟,我最近在项目中遇到一个问题,我们的系统需要集成一个新的第三方库,但这个库的接口和我们现有的代码完全不兼容。我该怎么办? 老鸟:这是个常见的问题,很多开发者都会遇到这种情况。你有没有听说过适配器模式? 菜鸟:适配器模式?没有,能详细说说吗? 老鸟:当然可以!这就是我们今天要讨论的主题。适配器模式是一个设计模式,可以帮助我们解决你现在遇到的问题。 渐进式介绍概念 老