IEEE 754 的标准对浮点数的处理

2024-05-10 08:32
文章标签 浮点数 处理 标准 ieee 754

本文主要是介绍IEEE 754 的标准对浮点数的处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考文章:

https://blog.csdn.net/weixin_42066185/article/details/88559936

作者在工作中现在就面临这个浮点数通过modbus协议向上位机传输的问题的存在,遇到的是,我们应该怎么样合适的处理这个float 4个bytes 的数据,下面总结一下 个人的调研的结果:

通过网上的调研结果有下面的两种的解决的方案:

方案一:通过将你所得到的带小数的放大一定的倍数,都变成整数进行处理,例如:3.24  --放大100   变成 324 ,然后上位机知道我放大了100 呗就好

方案二:采用IEEE 754 标准  wiki :https://zh.wikipedia.org/wiki/IEEE_754

一、IEEE 754 的标准对浮点数的处理
Step1 首先复习一下对于阶码、尾数

1、对于十进制

 -12.5 * 10**0

12.5:就是尾数 0 就是阶码

2、对于二进制

1.1001*2**3

1.1001:就是尾数  3 就是阶码
Step2 什么是浮点数的存储方式

1、理论

地址            +0                  +1                   +2                             +3
内容 SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM

这里
S 代表符号位,1是负,0是正
E 偏移127的幂,二进制阶码=(EEEEEEEE)-127。
M 24位的尾数保存在23位中,只存储23位,最高位固定为1。此方法用最较少的位数实现了
较高的有效位数,提高了精度。

零是一个特定值,幂是0 尾数也是0。

 
Step3 Modbus 中浮点数的标准存储实例

2、实例
浮点数-12.5作为一个十六进制数0xC1480000保存在存储区中,这个值如下:
地址 +0 +1 +2 +3
内容0xC1 0x48 0x00 0x00  

浮点数和十六进制等效保存值之间的转换相当简单。下面的例子说明上面的值-12.5如何转
换。
浮点保存值不是一个直接的格式,要转换为一个浮点数,位必须按上面的浮点数保存格式表
所列的那样分开,例如:


地址          +0                   +1                      +2                    +3
格式 SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM
二进制 11000001 01001000 00000000 00000000
十六进制 C1 48 00 00

从这个例子可以得到下面的信息:
符号位是1 表示一个负数
幂是二进制10000010或十进制130,130减去127是3,就是实际的幂。
尾数是后面的二进制数10010000000000000000000

在尾数的左边有一个省略的小数点和1,这个1在浮点数的保存中经常省略,加上一个1和小数
点到尾数的开头,得到尾数值如下:
1.10010000000000000000000

接着,根据指数调整尾数.一个负的指数向左移动小数点.一个正的指数向右移动小数点.因为
指数是3,尾数调整如下:
1100.10000000000000000000

结果是一个二进制浮点数,小数点左边的二进制数代表所处位置的2的幂,例如:1100表示
(1*2^3)+(1*2^2)+(0*2^1)+(0*2^0)=12。
小数点的右边也代表所处位置的2的幂,只是幂是负的。例如:.100...表示(1*2^(-1))+
(0*2^(-2))+(0*2^(-2))...=0.5。
这些值的和是12.5。因为设置的符号位表示这数是负的,因此十六进制值0xC1480000表示-
12.5。
 

以下是我做的例子:

#include "ring_buffer.h"typedef union
{uint8_t data[4];float fdata;
} float_iee;int main()
{float_iee data;data.fdata = -12.5;for (uint32_t i = 0; i < 4; i++){printf("%02x ", data.data[i]);}printf("\n ");return 0;
}

测试结果

 

最终结论就是:

在数据传输过程中直接使用memcpy直接复制到目标内存即可,就是满足IEEE 754 的标准对浮点数的处理

这篇关于IEEE 754 的标准对浮点数的处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975952

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

数据治理框架-ISO数据治理标准

引言 "数据治理"并不是一个新的概念,国内外有很多组织专注于数据治理理论和实践的研究。目前国际上,主要的数据治理框架有ISO数据治理标准、GDI数据治理框架、DAMA数据治理管理框架等。 ISO数据治理标准 改标准阐述了数据治理的标准、基本原则和数据治理模型,是一套完整的数据治理方法论。 ISO/IEC 38505标准的数据治理方法论的核心内容如下: 数据治理的目标:促进组织高效、合理地

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

C 标准库 - `<float.h>`

C 标准库 - <float.h> 概述 <float.h> 是 C 标准库中的一个头文件,它定义了与浮点数类型相关的宏。这些宏提供了关于浮点数的属性信息,如精度、最小和最大值、以及舍入误差等。这个头文件对于需要精确控制浮点数行为的程序非常有用,尤其是在数值计算和科学计算领域。 主要宏 <float.h> 中定义了许多宏,下面列举了一些主要的宏: FLT_RADIX:定义了浮点数的基数。

jenkins 插件执行shell命令时,提示“Command not found”处理方法

首先提示找不到“Command not found,可能我们第一反应是查看目标机器是否已支持该命令,不过如果相信能找到这里来的朋友估计遇到的跟我一样,其实目标机器是没有问题的通过一些远程工具执行shell命令是可以执行。奇怪的就是通过jenkinsSSH插件无法执行,经一番折腾各种搜索发现是jenkins没有加载/etc/profile导致。 【解决办法】: 需要在jenkins调用shell脚

明明的随机数处理问题分析与解决方案

明明的随机数处理问题分析与解决方案 引言问题描述解决方案数据结构设计具体步骤伪代码C语言实现详细解释读取输入去重操作排序操作输出结果复杂度分析 引言 明明生成了N个1到500之间的随机整数,我们需要对这些整数进行处理,删去重复的数字,然后进行排序并输出结果。本文将详细讲解如何通过算法、数据结构以及C语言来解决这个问题。我们将会使用数组和哈希表来实现去重操作,再利用排序算法对结果

8. 自然语言处理中的深度学习:从词向量到BERT

引言 深度学习在自然语言处理(NLP)领域的应用极大地推动了语言理解和生成技术的发展。通过从词向量到预训练模型(如BERT)的演进,NLP技术在机器翻译、情感分析、问答系统等任务中取得了显著成果。本篇博文将探讨深度学习在NLP中的核心技术,包括词向量、序列模型(如RNN、LSTM),以及BERT等预训练模型的崛起及其实际应用。 1. 词向量的生成与应用 词向量(Word Embedding)

使用协程实现高并发的I/O处理

文章目录 1. 协程简介1.1 什么是协程?1.2 协程的特点1.3 Python 中的协程 2. 协程的基本概念2.1 事件循环2.2 协程函数2.3 Future 对象 3. 使用协程实现高并发的 I/O 处理3.1 网络请求3.2 文件读写 4. 实际应用场景4.1 网络爬虫4.2 文件处理 5. 性能分析5.1 上下文切换开销5.2 I/O 等待时间 6. 最佳实践6.1 使用 as

Level3 — PART 3 — 自然语言处理与文本分析

目录 自然语言处理概要 分词与词性标注 N-Gram 分词 分词及词性标注的难点 法则式分词法 全切分 FMM和BMM Bi-direction MM 优缺点 统计式分词法 N-Gram概率模型 HMM概率模型 词性标注(Part-of-Speech Tagging) HMM 文本挖掘概要 信息检索(Information Retrieval) 全文扫描 关键词