KCF高速跟踪详解

2024-05-10 07:58
文章标签 详解 跟踪 高速 kcf

本文主要是介绍KCF高速跟踪详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Henriques, João F., et al. “High-speed tracking with kernelized 
correlation filters.” Pattern Analysis and Machine Intelligence, IEEE 
Transactions on 37.3 (2015): 583-596.

本文的跟踪方法效果甚好,速度奇高,思想和实现均十分简洁。其中利用循环矩阵进行快速计算的方法尤其值得学习。另外,作者在主页上十分慷慨地给出了各种语言的实现代码。 
本文详细推导论文中的一系列步骤,包括论文中未能阐明的部分。请务必先参看这篇简介循环矩阵性质的博客。

思想

一般化的跟踪问题可以分解成如下几步: 
1. 在 It 帧中,在当前位置 pt 附近采样,训练一个回归器。这个回归器能计算一个小窗口采样的响应。 
2. 在 It+1 帧中,在前一帧位置 pt 附近采样,用前述回归器判断每个采样的响应。 
3. 响应最强的采样作为本帧位置 pt+1

循环矩阵表示图像块

在图像中,循环位移操作可以用来近似采样窗口的位移。 
这里写图片描述 
训练时,围绕着当前位置进行的一系列位移采样可以用二维分块循环矩阵 X 表示,第ij块表示原始图像下移i行右移j列的结果。类似地,测试时,前一帧结果附近的一系列位移采样也可以用 X 表示。 
这里写图片描述 
这样的 X 可以利用傅里叶变换快速完成许多线性运算。

线性回归训练提速

此部分频繁用到了循环矩阵的各类性质,请参看这篇博客。 
线性回归的最小二乘方法解为: 

w=(XHX+λI)1XHy

根据循环矩阵乘法性质, XHX 的特征值为 x^x^ I 本身就是一个循环矩阵,其生成向量为 [1,0,0...0] ,这个生成向量的傅里叶变换为全1向量,记为 δ 。 

w=(Fdiag(x^x^)FH+λFdiag(δ)FH)1XHy

=(Fdiag(x^x^+λδ)FH)1XHy

根据循环矩阵求逆性质,可以把矩阵求逆转换为特征值求逆。 

w=Fdiag(1x^x^+λδ)FHXHy

w=Fdiag(1x^x^+λδ)FHFdiag(x^)FHy

利用 F 的酉矩阵性质消元: 

w=Fdiag(x^x^x^+λδ)FHy

分号表示用1进行对位相除。 
反用对角化性质: Fdiag(y)FH=C(F1(y)) ,上式的前三项还是一个循环矩阵。 

w=C(F1(x^x^x^+λδ))y

利用循环矩阵卷积性质 F(C(x)y)=x^y^ : 

F(w)=(x^x^x^+λδ)F(y)

由于 x^x^ 的每个元素都是实数,所以共轭不变:

F(w)=x^x^x^+λδF(y)=x^y^x^x^+λδ

论文中,最后这一步推导的分子部分写成 x^y^ ,是错误的。但代码中没有涉及。

线性回归系数 ω 可以通过向量的傅里叶变换和对位乘法计算得到。

核回归训练提速

不熟悉核方法的同学可以参看这篇博客的简单说明。核回归方法的回归式为: 

f(z)=αTκ(z)

其中 κ(z) 表示测试样本 z 和所有训练样本的核函数。参数有闭式解: 
α=(K+λI)1y

K 为所有训练样本的核相关矩阵: Kij=κ(xi,xj) 。如果核函数选择得当,使得 x 内部元素顺序更换不影响核函数取值,则可以保证 K 也是循环矩阵。以下核都满足这样的条件: 
这里写图片描述

设核相关矩阵的生成向量是 k 。推导和之前线性回归的套路非常类似: 

α=(Fdiag(k^)FH+Fdiag(λδ)FH)1y=(Fdiag(k^+λδ)FH)1y

=Fdiag(1k^+λδ)FHy=C(F1(1k^+λδ))y

利用循环矩阵卷积性质 F(C(x)y)=x^y^ : 

α^=(1k^+λδ)y^

这里 k 是核相关矩阵的第一行,表示原始生成向量 x0 和移位了 i 的向量 xi 的核函数。考察其处于对称位置上的两个元素: 
ki=κ(x0,xi),kNi=κ(x0,xNi)

两者都是同一个向量和自身位移结果进行运算。因为所有涉及到的核函数都只和位移的绝对值有关,所以 ki=kNi ,即 k 是对称向量。

举例: x0=[1,2,3,4] x1=[4,1,2,3] x3=[2,3,4,1] 。使用多项式核 κ(x,y)=xTy ,容易验证 κ(x0,x1)=κ(x0,x3)

对称向量的傅里叶变换为实数,有:

α^=(1k^+λδ)y^=y^k^+λδ

论文中,利用 k 的对称性消除共轭的步骤没有提及。

线性回归系数 α 可以通过向量的傅里叶变换和对位乘法计算得到。

核回归检测提速

所有待检测样本和所有训练样本的核相关矩阵为 K ,每一列对应一个待测样本。可以一次计算所有样本的响应( N×1 向量):

y=KTα

利用循环矩阵的转置性质性质, C(k) 的特征值为 k^ : 

y=C(k)Tα=C(k^)α=kα

利用循环矩阵的卷积性质: 

y=(k)α=kα

两边傅里叶变换: 

y^=k^α^

论文中,利用转置消除共轭的步骤没有提及。

所有侯选块的检测响应可以通过向量的傅里叶变换和对位乘法计算得到。

核相关矩阵计算提速

无论训练还是检测,都需要计算核相关矩阵 K 的生成向量 k 。除了直接计算每一个核函数,在某些特定的核函数下可以进一步加速。

多项式核

κ(x,y)=f(xTy)

其中 f 为多项式函数。写成矩阵形式: 

K=f(XTY)

f 在矩阵的每个元素上单独进行。根据循环矩阵性质, XTY 也是一个循环矩阵,其生成向量为 F1(y^x^) 。所以核相关矩阵的生成向量为: 

k=f(F1(y^x^))

RBF核

κ(x,y)=f(||xy||2)

其中 f 是线性函数。简单展开: 
κ(x,y)=f(||xy||2)=f(||x||2+||y||2+2xTy)

由于 X 中的所有 x 都通过循环移位获得,故 ||x||2 对于所有 x 是常数,同理 ||y||2 也是。所以核相关矩阵的生成向量为: 
k=f(||x||2+||y||2+F1(y^x^))

其他核

有一些核函数,虽然能保证 K 是循环矩阵,但无法直接拆解出其特征值,快速得到生成向量。比如Hellinger核: ixiyi ,Intersection核: imin(xi,yi)

多通道

在多通道情况下(例如使用了HOG特征),生成向量 x 变成 M×L ,其中 M 是样本像素数, L 是特征维度。在上述所有计算中,需要更改的只有向量的内积: 

xTy=l(xl)Tyl

注:非常感谢GX1415926535和大家的帮助,发现原文一处错误。(21)式中不应有转置,应为: 

f(z)=Kzα

这篇关于KCF高速跟踪详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975881

相关文章

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

MySQL数据库中ENUM的用法是什么详解

《MySQL数据库中ENUM的用法是什么详解》ENUM是一个字符串对象,用于指定一组预定义的值,并可在创建表时使用,下面:本文主要介绍MySQL数据库中ENUM的用法是什么的相关资料,文中通过代码... 目录mysql 中 ENUM 的用法一、ENUM 的定义与语法二、ENUM 的特点三、ENUM 的用法1