GDAL的使用

2024-05-10 06:20
文章标签 使用 gdal

本文主要是介绍GDAL的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 栅格位置(像素或者是行坐标)和地理参考坐标之间的转换可以通过仿射变换实现,仿射矩阵可以通过GDALDataset::GetGeoTransform()得到,依据下面的公式将像素/行坐标转换到地理参考空间:
    X g e o = G T ( 0 ) + X p i x e l . G T ( 1 ) + Y l i n e . G T ( 2 ) Y g e o = G T ( 3 ) + X p i x e l . G T ( 4 ) + Y l i n e . G T ( 5 ) X_{geo} = GT(0) + Xpixel.GT(1) + Yline.GT(2) \\ Y_{geo} = GT(3) + Xpixel.GT(4) + Yline.GT(5) Xgeo=GT(0)+Xpixel.GT(1)+Yline.GT(2)Ygeo=GT(3)+Xpixel.GT(4)+Yline.GT(5)
    其中像素坐标左上角为 ( 0 , 0 ) (0,0) (0,0) ( G T ( 0 ) , G T ( 3 ) ) (GT(0),GT(3)) (GT(0),GT(3))是栅格左上角坐标, G T ( 1 ) GT(1) GT(1)是像素宽度, G T ( 5 ) GT(5) GT(5)是像素的高度;
  • 可以通过地理控制点(GCP)来描述栅格数据集地理参考,关联了栅格位置和地理参考系统的一个或者多个位置,一个数据集会有一套控制点,控制点通过GDALDataset::GetGCPProjection()得到,每个控制点包含Char pszId(控制点标识符),Char pszInfo(通常是空串),double dfGCPPixel+double dfGCPLine(像素、线的位置是控制点在栅格的位置),double dfGCPX+double dfGCPY+double dfGCPZ(地理参考位置),本条和上一条都描述了栅格位置和地理参考坐标之间的关系;
  • 栅格波段GDALRasterBand
  • 颜色表:像素值被用作颜色表的下标;
try:import gdal
except:from osgeo import gdal	# gdal1.6
from osgeo.gdalconst import *	# 常用的常量# 要读取数据之前需要载入数据驱动
# 注册所有数据驱动
gdal.AllRegister()
# 某一类型的数据驱动,按照数据格式加载
driver = gdal.GetDriverByName('GTiff')
driver.Register()# 查看系统支持的数据格式,其中shortname就是上面GetDriverByName的参数,对于不同的gdal版本GetDriver的结果可能不同
drv_count = gdal.GetDriverCount()
for idx in range(drv_count):driver = gdal.GetDriver(idx)print( "%10s: %s" % (driver.ShortName, driver.LongName))# 读取遥感影像
# 打开GeoTIF文件
dataset = gdal.Open("/gdata/geotiff_file.tif")
# python的dir()函数可以快速查看某对象可用的操作
dataset.GetDescription() 	# 获得栅格的描述信息
dataset.RasterCount 	# 获得栅格数据集的波段数
dataset.RasterXSize 	# 栅格数据的宽度(X方向上的像素个数)
dataset.RasterYSize 	# 栅格数据的高度(Y方向上的像素个数)
dataset.GetGeoTransform() 	# 栅格数据的六参数,这六个参数包括 左上角坐标 , 像元X、Y方向大小 , 旋转 等信息。 要注意, Y 方向的像元大小为负值
GetProjection() 	# 栅格数据的投影
dataset.GetMetadata()		# 获取元数据# 获取数据集的信息
band = dataset.GetRasterBand(1)		# 获取第一个波段,下标从0开始
band.XSize, band.YSize, band.DataType	# 宽高和数据类型
# 数据类型对应
# 未知或未指定类型 gdalconst.GDT_Unknown 0
# 8位无符整型 gdalconst.GDT_Byte 1
# 16位无符整型 gdalconst.GDT_UInt16 2
# 16位整型 gdalconst.GDT_Int16 3
# 32位无符整型 gdalconst.GDT_UInt32 4
# 32位整型值 gdalconst.GDT_Int32 5
# 32位浮点型 gdalconst.GDT_Float32 6
# 64位浮点型 gdalconst.GDT_Float64 7
# 16位复数整型 gdalconst.GDT_CInt16 8
# 32位复数整型 gdalconst.GDT_CInt32 9
# 32位复数浮点型 gdalconst.GDT_CFloat32 10
# 64位复数浮点型 gdalconst.GDT_CFloat64 11
band.GetNoDataValue()		# 无意义填充值
band.GetMaximum()
band.GetMinimum()
band.ComputeRasterMinMax()# 访问栅格数据集的数据
dataset.ReadRaster() 	# 读取图像数据(以二进制的形式)
dataset.ReadAsArray() 	# 读取图像数据(以数组的形式),返回的是numpy的array
# 参数
# xoff,yoff :指定想要读取的部分原点位置在整张图像中距离全图原点的位置(以像元为单位)
# xsize,ysize : 指定要读取部分图像的矩形的长和宽(以像元为单位)
# buf_xsize,buf_ysize :可以在读取出一部分图像后进行缩放。那么就用这两个参数来定义缩放后图像最终的宽和高, GDAL 将帮你缩放到这个大小
# buf_type :可以对读出的数据的类型进行转换(比如原图数据类型是short,你要把它们缩小成byte)
# band_list :适应多波段的情况。可以指定要读取的波段# 查看图片信息
!gdalinfo /gdata/lu75i1.tif	
# 访问索引图像:所读的数据知识真实数据的索引,而不是灰度图像
dataset = gdal.Open('/gdata/lu75i1.tif')
band = dataset.GetRasterBand(1)
band.GetRasterColorInterpretation()		# 返回2,gdalconst.GCI_PaletteIndex,表示索引图
colormap = band.GetRasterColorTable()	# 获取颜色表
colormap.GetPaletteInterpretation()		# 获取颜色表的类型
colormap.GetCount()	# 颜色数量
for i in range(colormap.GetCount() - 10, colormap.GetCount()):print("%i:%s" % (i, colormap.GetColorEntry(i)))	# 获得颜色的四值元祖,例如rgb,cmyk
# 我们通过ReadRaster读出的数据值只是对应到这个表的一个索引而已。 
# 我们需要通过读出这些数据,并在真实数据表中找出真实数据, 重新组织成一个RGB表才能用来绘制。
# 如果不经过对应, 绘制出来的东西可能没有任何意义
# GTiff颜色表存储时是16位的,但是读取之后自动进行了处理变为0-255# 创建影像
driver = gdal.GetDriverByName( 'GTiff' )
dst_filename = '/tmp/x_tmp.tif'
dst_ds = driver.Create( dst_filename, 512, 512, 1, gdal.GDT_Byte )
from osgeo import osr
dst_ds.SetGeoTransform( [ 444720, 30, 0, 3751320, 0, -30 ] )
srs = osr.SpatialReference()
srs.SetUTM( 11, 1 )
srs.SetWellKnownGeogCS( 'NAD27' )
dst_ds.SetProjection( srs.ExportToWkt() )
raster = numpy.zeros( (512, 512) )
dst_ds.GetRasterBand(1).WriteArray( raster )

ref:
https://www.osgeo.cn/pygis/gdal.html

这篇关于GDAL的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975675

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完