GDAL的使用

2024-05-10 06:20
文章标签 使用 gdal

本文主要是介绍GDAL的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 栅格位置(像素或者是行坐标)和地理参考坐标之间的转换可以通过仿射变换实现,仿射矩阵可以通过GDALDataset::GetGeoTransform()得到,依据下面的公式将像素/行坐标转换到地理参考空间:
    X g e o = G T ( 0 ) + X p i x e l . G T ( 1 ) + Y l i n e . G T ( 2 ) Y g e o = G T ( 3 ) + X p i x e l . G T ( 4 ) + Y l i n e . G T ( 5 ) X_{geo} = GT(0) + Xpixel.GT(1) + Yline.GT(2) \\ Y_{geo} = GT(3) + Xpixel.GT(4) + Yline.GT(5) Xgeo=GT(0)+Xpixel.GT(1)+Yline.GT(2)Ygeo=GT(3)+Xpixel.GT(4)+Yline.GT(5)
    其中像素坐标左上角为 ( 0 , 0 ) (0,0) (0,0) ( G T ( 0 ) , G T ( 3 ) ) (GT(0),GT(3)) (GT(0),GT(3))是栅格左上角坐标, G T ( 1 ) GT(1) GT(1)是像素宽度, G T ( 5 ) GT(5) GT(5)是像素的高度;
  • 可以通过地理控制点(GCP)来描述栅格数据集地理参考,关联了栅格位置和地理参考系统的一个或者多个位置,一个数据集会有一套控制点,控制点通过GDALDataset::GetGCPProjection()得到,每个控制点包含Char pszId(控制点标识符),Char pszInfo(通常是空串),double dfGCPPixel+double dfGCPLine(像素、线的位置是控制点在栅格的位置),double dfGCPX+double dfGCPY+double dfGCPZ(地理参考位置),本条和上一条都描述了栅格位置和地理参考坐标之间的关系;
  • 栅格波段GDALRasterBand
  • 颜色表:像素值被用作颜色表的下标;
try:import gdal
except:from osgeo import gdal	# gdal1.6
from osgeo.gdalconst import *	# 常用的常量# 要读取数据之前需要载入数据驱动
# 注册所有数据驱动
gdal.AllRegister()
# 某一类型的数据驱动,按照数据格式加载
driver = gdal.GetDriverByName('GTiff')
driver.Register()# 查看系统支持的数据格式,其中shortname就是上面GetDriverByName的参数,对于不同的gdal版本GetDriver的结果可能不同
drv_count = gdal.GetDriverCount()
for idx in range(drv_count):driver = gdal.GetDriver(idx)print( "%10s: %s" % (driver.ShortName, driver.LongName))# 读取遥感影像
# 打开GeoTIF文件
dataset = gdal.Open("/gdata/geotiff_file.tif")
# python的dir()函数可以快速查看某对象可用的操作
dataset.GetDescription() 	# 获得栅格的描述信息
dataset.RasterCount 	# 获得栅格数据集的波段数
dataset.RasterXSize 	# 栅格数据的宽度(X方向上的像素个数)
dataset.RasterYSize 	# 栅格数据的高度(Y方向上的像素个数)
dataset.GetGeoTransform() 	# 栅格数据的六参数,这六个参数包括 左上角坐标 , 像元X、Y方向大小 , 旋转 等信息。 要注意, Y 方向的像元大小为负值
GetProjection() 	# 栅格数据的投影
dataset.GetMetadata()		# 获取元数据# 获取数据集的信息
band = dataset.GetRasterBand(1)		# 获取第一个波段,下标从0开始
band.XSize, band.YSize, band.DataType	# 宽高和数据类型
# 数据类型对应
# 未知或未指定类型 gdalconst.GDT_Unknown 0
# 8位无符整型 gdalconst.GDT_Byte 1
# 16位无符整型 gdalconst.GDT_UInt16 2
# 16位整型 gdalconst.GDT_Int16 3
# 32位无符整型 gdalconst.GDT_UInt32 4
# 32位整型值 gdalconst.GDT_Int32 5
# 32位浮点型 gdalconst.GDT_Float32 6
# 64位浮点型 gdalconst.GDT_Float64 7
# 16位复数整型 gdalconst.GDT_CInt16 8
# 32位复数整型 gdalconst.GDT_CInt32 9
# 32位复数浮点型 gdalconst.GDT_CFloat32 10
# 64位复数浮点型 gdalconst.GDT_CFloat64 11
band.GetNoDataValue()		# 无意义填充值
band.GetMaximum()
band.GetMinimum()
band.ComputeRasterMinMax()# 访问栅格数据集的数据
dataset.ReadRaster() 	# 读取图像数据(以二进制的形式)
dataset.ReadAsArray() 	# 读取图像数据(以数组的形式),返回的是numpy的array
# 参数
# xoff,yoff :指定想要读取的部分原点位置在整张图像中距离全图原点的位置(以像元为单位)
# xsize,ysize : 指定要读取部分图像的矩形的长和宽(以像元为单位)
# buf_xsize,buf_ysize :可以在读取出一部分图像后进行缩放。那么就用这两个参数来定义缩放后图像最终的宽和高, GDAL 将帮你缩放到这个大小
# buf_type :可以对读出的数据的类型进行转换(比如原图数据类型是short,你要把它们缩小成byte)
# band_list :适应多波段的情况。可以指定要读取的波段# 查看图片信息
!gdalinfo /gdata/lu75i1.tif	
# 访问索引图像:所读的数据知识真实数据的索引,而不是灰度图像
dataset = gdal.Open('/gdata/lu75i1.tif')
band = dataset.GetRasterBand(1)
band.GetRasterColorInterpretation()		# 返回2,gdalconst.GCI_PaletteIndex,表示索引图
colormap = band.GetRasterColorTable()	# 获取颜色表
colormap.GetPaletteInterpretation()		# 获取颜色表的类型
colormap.GetCount()	# 颜色数量
for i in range(colormap.GetCount() - 10, colormap.GetCount()):print("%i:%s" % (i, colormap.GetColorEntry(i)))	# 获得颜色的四值元祖,例如rgb,cmyk
# 我们通过ReadRaster读出的数据值只是对应到这个表的一个索引而已。 
# 我们需要通过读出这些数据,并在真实数据表中找出真实数据, 重新组织成一个RGB表才能用来绘制。
# 如果不经过对应, 绘制出来的东西可能没有任何意义
# GTiff颜色表存储时是16位的,但是读取之后自动进行了处理变为0-255# 创建影像
driver = gdal.GetDriverByName( 'GTiff' )
dst_filename = '/tmp/x_tmp.tif'
dst_ds = driver.Create( dst_filename, 512, 512, 1, gdal.GDT_Byte )
from osgeo import osr
dst_ds.SetGeoTransform( [ 444720, 30, 0, 3751320, 0, -30 ] )
srs = osr.SpatialReference()
srs.SetUTM( 11, 1 )
srs.SetWellKnownGeogCS( 'NAD27' )
dst_ds.SetProjection( srs.ExportToWkt() )
raster = numpy.zeros( (512, 512) )
dst_ds.GetRasterBand(1).WriteArray( raster )

ref:
https://www.osgeo.cn/pygis/gdal.html

这篇关于GDAL的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975675

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学