常见的一些RELAXED MODEL CONCEPTS

2024-05-09 21:20
文章标签 常见 model concepts relaxed

本文主要是介绍常见的一些RELAXED MODEL CONCEPTS,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

释放一致性(release consistency, RC)

RC的核心观点是:使用 FENCE 围绕所有同步操作是多余的

  • 同步获取 (acquire) 只需要一个后续的 FENCE,
  • 同步释放 (release) 只需要一个前面的 FENCE。

对于表 5.4 的临界区示例,可以省略 FENCE F11、F14、F21 和 F24。让我们关注 "R11: release(lock)"。FENCE F13 很重要,因为它在锁释放之前对临界区的load (L1i) 和store (S1j) 进行排序。FENCE F14 可以省略,因为如果core C1 的后续内存操作(表中未显示)在释放 R11 之前执行,则没有问题。

RC 实际上允许这些后续操作早在临界区开始时就执行,而 XC 的 FENCE 不允许这样的排序。RC 提供了类似于 FENCE 的 ACQUIRE 和 RELEASE 操作,但仅在一个方向而不是像 FENCE 那样在两个方向上对内存访问进行排序。更一般地说,RC 只需要:

  • ACQUIRE -> Load, Store (but not Load, Store -> ACQUIRE)
  • Load, Store -> RELEASE (but not RELEASE -> Load, Store) and
  • SC ordering of ACQUIREs and RELEASEs:
  • ACQUIRE -> ACQUIRE
  • ACQUIRE -> RELEASE
  • RELEASE -> ACQUIRE, and
  • RELEASE -> RELEASE

 

RISC-V 弱内存顺序 (RVWMO)

RISC-V 实现了一个内存模型 RVWMO(注1),它可以理解为释放一致性 (RC) 和 XC 的混合。

  • 与 XC 类似,RVWMO 是根据全局内存顺序(所有内存操作的总顺序)定义的,并且具有 FENCE 指令的几种变体。
  • 与 RC 类似,load和store可以携带注释 (annotation):load指令可以携带 ACQUIRE 注释,store指令可以携带 RELEASE 注释
  • RMW 指令可以使用单独的 RELEASE、单独的ACQUIRE 或 RELEASE 和 ACQUIRE 两者一起进行注释。

RELEASE/ACQUIRE orderings

有两种类型的ACQUIRE annotations和RELEASE annotations

  • ACQUIRE-RCpc / RELEASE-RCpc
  • ACQUIRE-RCsc / RELEASE-RCsc

其中,pc指的是processor consistency, pc是TSO的前身,SC指的是Sequential Consistency;

LOAD两种都可以用,RMW只能用RCsc;

这两种annotations提供的order描述如下:

  • ACQUIRE -> Load,Store (ACQUIRE refers to both ACQUIRE-RCsc and ACQUIRE-RCpc)
  • Load,Store -> RELEASE (RELEASE refers to both RELEASE-RCsc and RELEASE-RCpc)
  • RELEASE-RCsc -> ACQUIRE-RCsc

FENCEorderings. 

RVWMO有几种FENCE指令:

  •  strong FENCE instruction, FENCE RW,RW;
    • enforces the Load,Store !Load,Store orderings;
  • non-trivial combinations:
    • FENCE RW,W;
    • FENCE R,RW,
    • FENCE R,R;
    • FENCE W,W;
    • FENCE.TSO

这里面R代表load, W代表store,简单描述下上面部分指令的含义;

  • FENCE R,R: 强制保证load/load的顺序;
  • FENCE.TSO:强制保证load->load, Store->Store, Load->Store的顺序;

RVWMO的例子

        S1 ->L1 is enforced in core C1 due to the former and S2 -> L2 is enforced in core C2 due to the latter. The combination, thus, ensures that both r1 and r2 cannot read 0.

Dependency-induced orderings.

        RVWMO 在某些方面略强于 XC。地址、数据和控制相关性可以在 RVWMO 中引起内存顺序,但在 XC 中则不然。考虑表 5.12 中所示的示例。这里,core C1 向 data2 写入 NEW,然后设置指针指向 data2 的位置。(通过 FENCE W, W 指令对两个store S1 和 S2 进行排序)。在core C2 中,L1 将指针的值load到 r1 中,然后load L2 解引用 (dereference) r1。尽管两个load L1 和 L2 没有明确排序,但 RVWMO 隐式强制执行 L1 -> L2,因为 L1 和 L2 之间存在地址依赖 (address dependency):L1 产生的值被 L2 解引用。

考虑表 5.13 中显示的示例,也称为load缓冲 (load buffering)。让我们假设 x 和 y 最初都是 0。可以允许 r1 和 r2 凭空读取任意值(比如 42)吗?有点令人惊讶的是,XC 并不禁止这种行为。因为在 L1 和 S1 以及 L2 和 S2 之间都没有 FENCE,所以 XC 不会强制任何一个 Load -> Store 顺序。这可能会导致执行以下操作:

  • S1 预测 L1 将读取 42,然后推测性地将 42 写入 y,
  • L2 从 y 读取 42 到 r2,
  • S2 将 42 写入 x,并且
  • L1 将 42 从 x 读入 r1,从而使初始预测“正确”。

        然而,RVWMO 通过隐式强制 Load -> Store 顺序 (L1 -> S1 和 L2 -> S2) 来禁止这种行为,因为每个load和store之间存在数据依赖 (data dependency) 关系:每个load读取的值由接下来的store写入。

        与此类似,RVWMO 还隐式地强制在load和后续store之间进行排序,该store控制依赖 (control dependent) 于load。

Same address orderings.        

与 XC 一样,RVWMO 也强制执行

  • Load -> Store ordering to the same address,
  • Store -> Store ordering to the same address, and does not enforce
  • Store -> Load ordering to the same address.

与 XC 不同,RVWMO 不强制

  • Load -> Load ordering to the same address in all situations

仅在以下情况下才会强制执行:

(a) 两次load之间没有store到同一地址,以及

(b) 两次load返回由不同store写入的值。对于这种微妙的基本原理的详细讨论,读者可以参考 RISC-V 规范 [31]。

RISC-V 支持两种类型的 RMW

        原子内存操作 (AMO) 和保留load/条件store (LdR/StC)。

        虽然 AMO 来自单个指令(例如,fetch-and-increment),但 LdR/StC 实际上由两个单独的指令组成:LdR 带来一个值并为core做一个保留记号,而 StC 只有在保留记号仍然存在时才能成功。这两种 RMW 的原子性语义略有不同。与 XC RMW 类似,如果load和store在全局内存顺序中连续 (consecutively) 出现,则称 AMO 是原子的。LdR/StC 较弱。 假设 LdR 读取了 store s 产生的值;只要在全局内存顺序中 s 和 StC 之间没有相同地址的store,就可以说 LdR/StC 是原子的。

总而言之,RVWMO 是一种结合了 XC 和 RC 方面的最新宽松内存模型。对于详细的提议和正式规范,读者可以参考 RISC-V 规范。

这篇关于常见的一些RELAXED MODEL CONCEPTS的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/974533

相关文章

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

前端下载文件时如何后端返回的文件流一些常见方法

《前端下载文件时如何后端返回的文件流一些常见方法》:本文主要介绍前端下载文件时如何后端返回的文件流一些常见方法,包括使用Blob和URL.createObjectURL创建下载链接,以及处理带有C... 目录1. 使用 Blob 和 URL.createObjectURL 创建下载链接例子:使用 Blob

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

Pytest多环境切换的常见方法介绍

《Pytest多环境切换的常见方法介绍》Pytest作为自动化测试的主力框架,如何实现本地、测试、预发、生产环境的灵活切换,本文总结了通过pytest框架实现自由环境切换的几种方法,大家可以根据需要进... 目录1.pytest-base-url2.hooks函数3.yml和fixture结论你是否也遇到过

Pydantic中model_validator的实现

《Pydantic中model_validator的实现》本文主要介绍了Pydantic中model_validator的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录引言基础知识创建 Pydantic 模型使用 model_validator 装饰器高级用法mo

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

GORM中Model和Table的区别及使用

《GORM中Model和Table的区别及使用》Model和Table是两种与数据库表交互的核心方法,但它们的用途和行为存在著差异,本文主要介绍了GORM中Model和Table的区别及使用,具有一... 目录1. Model 的作用与特点1.1 核心用途1.2 行为特点1.3 示例China编程代码2. Tab

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi