算法打卡day45

2024-05-09 20:52
文章标签 算法 打卡 day45

本文主要是介绍算法打卡day45,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今日任务:

1)300.最长递增子序列

2)674.最长连续递增序列

3)718.最长重复子数组

4)复习day20

300.最长递增子序列

题目链接:300. 最长递增子序列 - 力扣(LeetCode)

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1提示:
1 <= nums.length <= 2500
-10^4 <= nums[i] <= 104

文章讲解:代码随想录 (programmercarl.com)

视频讲解:动态规划之子序列问题,元素不连续!| LeetCode:300.最长递增子序列哔哩哔哩bilibili

思路:

这个问题可以使用动态规划来解决。我们可以定义一个状态数组dp,其中dp[i]表示以第 i 个元素结尾的最长递增子序列的长度。

具体的动态规划转移方程如下:

  • 对于dp[i],我们需要考虑第 i 个元素与前面的元素的关系:
    1. 如果 nums[i] 大于 nums[j](0 ≤ j < i),则第 i 个元素可以接在第 j 个元素后面形成一个更长的递增子序列,此时 dp[i] = max(dp[i], dp[j] + 1)
    2. 否则,第 i 个元素无法接在任何元素后面形成递增子序列,此时 dp[i] = 1(表示只有第 i 个元素自己构成一个递增子序列)。

最终的答案就是dp数组中的最大值。

class Solution:def lengthOfLIS(self, nums: List[int]) -> int:n = len(nums)if n == 0:return 0# 初始化状态数组dp = [1]*n# 动态规划转移for i in range(1,n):for j in range(i):if nums[j] < nums[i]:dp[i] = max(dp[i],dp[j]+1)# 返回dp数组中的最大值return max(dp)

674.最长连续递增序列

题目链接:674. 最长连续递增序列 - 力扣(LeetCode)

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。示例 1:
输入nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。示例 2:
输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。提示:
0 <= nums.length <= 10^4
-10^9 <= nums[i] <= 10^9

文章讲解:代码随想录 (programmercarl.com)

视频讲解:动态规划之子序列问题,重点在于连续!| LeetCode:674.最长连续递增序列哔哩哔哩bilibili

思路:

这一题我们可以用动态规划,也可以用贪心 算法来解决这个问题。

动态规划:

我们可以定义一个状态数组 dp,其中 dp[i] 表示以第 i 个元素结尾的最长连续递增子序列的长度。初始时,所有元素的最长连续递增子序列长度都为1。

然后,我们可以从第二个元素开始遍历数组,对于每个位置 i,我们判断 nums[i] 是否大于 nums[i-1]

  • 如果是,则 dp[i] = dp[i-1] + 1,表示以当前元素结尾的最长连续递增子序列的长度比前一个元素多1;
  • 如果不是,则 dp[i] = 1,表示以当前元素结尾的最长连续递增子序列的长度重新开始计算。

最终,我们返回状态数组 dp 中的最大值即为所求的最长连续递增子序列的长度。

class Solution:# 动态规划def findLengthOfLCIS(self, nums: List[int]) -> int:n = len(nums)if n <= 1:return n# 初始化状态数组dp = [1] * n# 动态规划转移for i in range(1, n):if nums[i] > nums[i-1]:dp[i] = dp[i-1] + 1# 返回dp数组中的最大值return max(dp)

贪心算法:

我们可以遍历数组,用一个变量记录当前连续递增子序列的长度,同时维护一个变量记录最长连续递增子序列的长度。

具体步骤如下:

  1. 初始化当前连续递增子序列的长度 cur_len 和最长连续递增子序列的长度 max_len,均设为1(因为至少有一个元素构成子序列)。
  2. 从数组的第二个元素开始遍历,判断当前元素是否比前一个元素大:
    • 如果是,则当前连续递增子序列的长度加1,并更新最长连续递增子序列的长度;
    • 如果不是,则当前连续递增子序列的长度重新设为1。
  3. 最终返回 max_len 即为最长连续递增子序列的长度。
class Solution:# 贪心算法def findLengthOfLCIS2(self, nums: List[int]) -> int:n = len(nums)if n <= 1:return ncur_len = 1  # 当前连续递增子序列的长度max_len = 1  # 最长连续递增子序列的长度for i in range(1, n):if nums[i] > nums[i - 1]:  # 当前元素比前一个元素大cur_len += 1max_len = max(max_len, cur_len)else:cur_len = 1return max_len

感想:

针对给定一个未经排序的整数数组,找到最长且连续递增的子序列,两种方法都可以解决,但在这种情况下,贪心算法更为简单且高效。

贪心算法的优势:

  • 在这个问题中,连续递增子序列的最大长度实际上就是最长连续递增子序列的长度。因此,我们只需要从头到尾遍历数组一次,记录当前递增序列的起始位置和长度即可。
  • 贪心算法的时间复杂度是 O(n),空间复杂度是 O(1),非常高效。

动态规划的不足:

  • 对于这个问题,使用动态规划可能会过于复杂。动态规划通常用于更复杂的问题,其中状态之间存在更复杂的依赖关系,而在这个问题中,并不需要记录每个位置的状态,只需要记录当前递增序列的起始位置和长度即可。

718.最长重复子数组

题目链接:718. 最长重复子数组 - 力扣(LeetCode)

给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。示例:
输入:
A: [1,2,3,2,1]
B: [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3, 2, 1] 。提示:
注意题目中说的子数组,其实就是连续子序列
1 <= len(A), len(B) <= 1000
0 <= A[i], B[i] < 100

文章讲解:代码随想录 (programmercarl.com)

视频讲解:动态规划之子序列问题,想清楚DP数组的定义 | LeetCode:718.最长重复子数组哔哩哔哩bilibili

思路:

这个问题可以用动态规划来解决。我们可以使用一个二维数组 dp,其中 dp[i][j] 表示以 A[i-1]B[j-1] 结尾的公共子数组的长度。如果 A[i-1]B[j-1] 相等,那么 dp[i][j] = dp[i-1][j-1] + 1,否则 dp[i][j] = 0

class Solution:def findLength(self, nums1: List[int], nums2: List[int]) -> int:# 获取数组 nums1 和 nums2 的长度m, n = len(nums1), len(nums2)# 初始化动态规划数组 dpdp = [[0] * (n + 1) for _ in range(m + 1)]# 初始化最大公共子数组长度为 0max_len = 0# 遍历数组 nums1 和 nums2for i in range(1, m + 1):for j in range(1, n + 1):# 如果 nums1[i-1] 和 nums2[j-1] 相等,则更新 dp[i][j] 为前一个状态加 1if nums1[i - 1] == nums2[j - 1]:dp[i][j] = dp[i - 1][j - 1] + 1# 更新最大公共子数组长度max_len = max(max_len, dp[i][j])# 返回最大公共子数组长度return max_len

这篇关于算法打卡day45的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/974475

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/