java并发编程学习笔记之线程池等源码小析

2024-05-09 08:08

本文主要是介绍java并发编程学习笔记之线程池等源码小析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      在java并发编程中,线程池是一个比较重要的点,什么时候需要使用线程池,什么时候不需要使用线程池,看不同的需求,众所周知,新增一个线程是比较耗资源的,因此如果每次新增一个任务就添加一个线程,在分时系统中,这不仅会造成每个线程所获得的执行时间大大降低,同时也会使cpu和内存大大消耗,线程池是一种比较合适的处理办法,一方面缓解资源紧张,一方面又能获得不错的性能,但是,对于批处理作业和耗费资源不是很多的任务,选择线程池不是一个很好地设计办法。

     首先看看两个新的接口,Callable和Future源码如下

     

public interface Callable<V> {
/**
* Computes a result, or throws an exception if unable to do so.
*
* @return computed result
* @throws Exception if unable to compute a result
*/
V call() throws Exception;
}

    

package java.util.concurrent;
public interface Future<V> {
boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();
boolean isDone();
V get() throws InterruptedException, ExecutionException;
V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}

    简而言之,callable接口类似Runnable 接口,其call()方法和Runnable的run()方法很相似,但是Callable有返回值,而Runnable没有返回值。Future保存异步计算的结果。可以启动一个计算,将Future对象交给某个线程,然后忘掉它,也就是当他是一个返回值。

    通常在一般线程中会使用FutureTask类,FutureTask接口继承自RunnableFuture,而Runnable接口继承Runnable和Future。

    首先看下FutureTask的简单用法:

package com.luchi.thread.threadpool;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
public class TestFutureRCallable implements Callable<Integer>{
private int counter=0;
@Override
public Integer call() throws Exception {
// TODO Auto-generated method stub
System.out.println("i am on the running");
return 1;
}
public  static  void main(String[]args) throws InterruptedException, ExecutionException{
TestFutureRCallable testThread=new TestFutureRCallable();
FutureTask<Integer>futureTask=new FutureTask<Integer>(testThread);
Thread thread=new Thread(futureTask);
thread.start();
System.out.println("future returns:"+futureTask.get());
}
}

      上面程序把Callable的继承类当做FutureTask构造函数参数,然后运行Thread,最后FutureTask能够得到返回值。

      FutureTask有几个构造函数,来看源码

 

     

 public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW;       // ensure visibility of callable
}
/**
* Creates a {@code FutureTask} that will, upon running, execute the
* given {@code Runnable}, and arrange that {@code get} will return the
* given result on successful completion.
*
* @param runnable the runnable task
* @param result the result to return on successful completion. If
* you don't need a particular result, consider using
* constructions of the form:
* {@code Future<?> f = new FutureTask<Void>(runnable, null)}
* @throws NullPointerException if the runnable is null
*/
public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result);
this.state = NEW;       // ensure visibility of callable
}

  一个是FutureTask(Callable callbale),接受Callable对象,另一个是FutureTask(Runnable runnable,V result),接受Runnable对象。但是从源码可以看出,不管是Callable或者是Runnable,FutureTask都将其转化成Callable对象,Executors.callable(runnable, result);这个方法使用了适配器模式,将Runnable对象转换成Callable对象,看一眼源码:

 public static <T> Callable<T> callable(Runnable task, T result) {
if (task == null)
throw new NullPointerException();
return new RunnableAdapter<T>(task, result);
}
static final class RunnableAdapter<T> implements Callable<T> {
final Runnable task;
final T result;
RunnableAdapter(Runnable task, T result) {
this.task = task;
this.result = result;
}
public T call() {
task.run();
return result;
}
}

   从源码可以看出,适配器将Runnable对象的run方法放在了Callable对象的call接口中

   也就是说,无论是Callable还是Runnable对象,在FutureTask中都是当做Callable对象使用,由于FutureTask继承了Runnable接口,看一眼其实现的run方法

   

  public void run() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}

   其核心就是执行callable对象的call方法,这也和上面的分析对应。

   然后看一眼FutureTask的get方法

   

  public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
}

 如果计算没有结束,则阻塞,如果已经完成则返回计算结果

 

 说了这么多,最后来看看线程池。

 首先看下线程池的简单用法:

 

package com.luchi.thread.threadpool;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
public class TestThreadPool implements Callable<Integer>{
@Override
public Integer call() throws Exception {
// TODO Auto-generated method stub
System.out.println("the thread is running");
return 10;
}
public static void main(String args[]) throws InterruptedException, ExecutionException{
ExecutorService excutor =Executors.newCachedThreadPool();
TestFutureRCallable test=new TestFutureRCallable();
Future<Integer> future=excutor.submit(test);
System.out.println("  "+future.get());
excutor.shutdown();
}
}

 

 

 

 上面的程序中,简单的使用了线程池,常见的获取线程池的方法有两种,一种是 Executors.newCachedThreadPool()一种是Executors.newFixedThreadPool();看一眼两者的源码

 

 

public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}

 

   两者都返回了ThreadPoolExecutor对象,ThreadPoolExecutor构造函数的意义简单解释下,第一个和第二个参数指的是线程池中线程的线程数量最小M和最大的值N,第三个是多长时间空闲线程回收,第四个参数是第三个的时间单位,第五个参数是表示使用的阻塞Queue,线程池开设线程的方法如下:

   假如新任务来了,如果当前线程数少于最小的M,则新增一个线程,如果在M~N之间,则把任务丢进等待队列中,如果等待队列满了之后,则再新增一个线程,直到到最大的值N。

   newFixecThreadPool中使用了M值和N值相同,也就是新任务来了会一直增开线程数到M,然后再丢进LinkedBlockingQueue中,LinkedBlockingQueue是一个大小无限的阻塞队列,当然这个无限是相对于当前的资源情况,newCachedThreadPool的线程数是从0到无限个,而SynchronousQueue容量为0,意味着任务来了就新开一个线程?(这里不是很了解,有待研究)

   再来看一下其submit()方法

 

 public <T> Future<T> submit(Runnable task, T result) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task, result);
execute(ftask);
return ftask;
}
/**
* @throws RejectedExecutionException {@inheritDoc}
* @throws NullPointerException       {@inheritDoc}
*/
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}

   summit接受Callable和Runnable方法,返回执行的Future对象,本文不去探讨实现细节。

 

这篇关于java并发编程学习笔记之线程池等源码小析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/972852

相关文章

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

Spring Security中用户名和密码的验证完整流程

《SpringSecurity中用户名和密码的验证完整流程》本文给大家介绍SpringSecurity中用户名和密码的验证完整流程,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 首先创建了一个UsernamePasswordAuthenticationTChina编程oken对象,这是S