深度学习之一:CNN初见

2024-05-09 07:58
文章标签 学习 深度 cnn 初见

本文主要是介绍深度学习之一:CNN初见,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前几篇接触了关于神经网络的学习方法,总结起来的要点有以下几点:

1,BP算法

2,激励函数

3,正则化与交叉验证等其他防止过拟合的方法

 

BP神经网络在之前的工作中取到了不错的效果,但是在Micheal Nilson的数的第五章,描述了之前的神经网络在增加多个隐含层之后训练效果会大大下降,也就是说,对于层数过多的网络训练效果不理想,如何训练深层的神经网络成了一个问题,这就是深度学习的由来

 

深度学习近些年来很火,尤其是在自然语言处理领域,其取得的成就也是巨大的。之前我对深度学习是有畏惧心理的,因为我觉得挺难的,后来慢慢接触,发现这个也是一个循序渐进的过程,还是要有信心。

 

深度学习一个最广泛的应用就是卷积神经网络(deep convolutional neural networks),也就是CNN。这篇文章就简要说一下CNN模型的基本模型。

 

回到正题:Introducing convolutional networks

 

还是以之前的手写数字识别为基本,阐述CNN。

 

好的,回到CNN主题。

首先从之前的BP神经网络慢慢过渡到CNN,回顾之前的手写识别问题,我们识别一副28*28的手写图片,我们将图片转换成像素,然后手写黑色点得像素点标注为1,其他空白的像素标注为0,因此形成了28*28个BP神经网络输入层,然后我们设计了一个30个神经元的中间层,以及最后的10个神经元的输入层,其典型结构如下:

 

 但是当我们想在这个模型上加了隐藏层层数的时候,其训练结果就出现了很大的不稳定,在加入多个隐藏层之后需要学习的参数变得很多,这一方面增加了训练的难度,也增加了训练的不稳定性,在传统的神经网络模型中,难以对深层的网络进行训练,这就形成了一个瓶颈。

 

因此需要一些新的模型,CNN就是这样的新的模型。

卷积神经网络的基本思想有以下三点:

1. local receptive fields 

2. shared weights

3. pooling

英文的名称总是感觉不太好翻译成中文,索性就不翻译了,之后会介绍这些到底是什么东西。

 

首先我们看一下什么是 local receptive fields

 

在之前介绍的神经网络中,每个层的神经元总是与前面一层的所有神经元相连,也就是全相连,回想之前的BP神经网络,在隐藏层的神经元每个都和输入层的28*28个直接相连,也就是说每个盛景园需要训练 28*28+1个参数,但是在CNN中,隐藏层的神经元并不一定会和之前的所有神经元相连,以手写数字识别为例,每个隐藏层的神经元都会和输入层的部分神经元相连,如下图:

 

 

 

 已上图为例,隐藏层的神经元与输入层的5*5个神经元相连,而这个5*5的区域就称之为Local Receptive Fields,在上图的隐藏层神经元中,需要训练5*5+1个参数,也就是5*5个与上面映射区域的权重因子和一个偏移量biase。然后我们将上图的5*5大小的窗口从上图的左上角,按照从左到右,从上到下的规则逐渐移动到右下角,每次移动一个像素点(这个是举例,实际上可以改变这个值),因此我们可以得到如下的图:

如上图所示的移动方法,我们可以很顺利的推出,隐藏层的结果是24*24个神经元(按照窗口移动法则)

明白了这点,我们就可以来了解shared weights and biases概念了

 

shared weights and biases:

 

前面说到过,在隐藏层的每个神经元都是有5*5+1个参数,也就是25个权重w和一个偏移量b,但是之前没有提到的是,在这个隐藏层中,所有的神经元的参数的值都是一样的,也就是说,对于隐藏层的所有神经元,其输出都是满足下面的条件:



 只不过,每个神经元对应的映射区域不一样,也就是说上式的a值不同而已。注意上面式子的大括号左边表示的是激励函数,比如我们前面用到过的sigmoid函数。

为什么这样设计是有意义的,可以用一个简单的比喻说明:一个猫的图片的其中一个部分和其他的部分都是猫的一部分,也就是说都是猫的特征,因此这两个部分的特征值(w,b)设置成一样的。

 

也是这样,有时候,我们将从输入层到隐藏层的映射称之为 feature map(特征映射)。shared weights 和bias经常被说成是 内核(kernel)或者过滤器(filter)。

 

实际应用中,我们可能会不只一个feature map,可能会有多个,如下图所示:



 上图就展示了从输入层到隐藏层的三个feature map,每个map都有5*5+1个的训练特征,注意每一个map上的神经元的w和b是一样的,但是不通过的map之间则不一定(一般不一样)

 

采用相同的w和b的好处是大大减少了训练的参数的个数,对于28*28的图像识别问题,我们假设隐藏层有20个map,那么会有(5*5+1)*20个参数,对比之前的20个神经元隐藏层的30*(28*28+1)个参数,可以看出来参数是大大减小了。

 

最后来看 pooling layer

 

pooling layer一般在卷基层后面(卷基层对应上面的隐藏层),该层的目的是为了简化卷基层的训练输出数据。形象的说,pooling layer就是将卷基层进行压缩一下,举个例子,pooling layer的一个神经元可以对应卷积层的2*2区域的概括,具体的说,以最常用max  pooling为例,在max pooling中,pooling层的每一个神经元的值对应卷积层的2*2的区域的最大输出值,如下图所示:



 在24*24的卷积层压缩之后,在pooling就只有12*12大小了。上文说过,卷积层的个数可能不止一个,因此一般会有下面的结构:



 当然不止是max pooling一种技术用在了pooling layer,比如还有一种叫 L2 pooling的技术:其方法是取卷积层2*2区域输出值的和值的开根号值,诸如此类。需要说明的是一直说的2*2区域只是为了描述随便选的,并不是一定是2*2区域。

 

好了,现在可以将上面的所有元素组成一个整体了.我们可以使用下面的CNN网络模型:



 得到了模型,我们还是可以按照之前的梯度下降方法来求参数值,会在后面的学习中跟进这个部分。

上图的最后一层是输出层,也就是手写识别的10个数字,需要说明的是这个输出层和pooling层是全连接的,也就是说,输出层的每个神经元都是和pooling层的所有神经元相连的。可以在中间多加几个卷积层和pooling层。

 

 

这些是CNN的基本模型,而且也只是以单个卷积层和pooling层为例,实际中可能会有多个卷积层,而且对应的全连接情况也是变化很多,比如我们我可在输出层之前再加一个全连接层。变化很多,因此这里只是简单的描述一下概念,后面会对CNN有更加深入的探讨。

这篇关于深度学习之一:CNN初见的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/972830

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]