本文主要是介绍spark RDD transformation操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
spark RDD transformation操作import org.apache.spark.SparkConf
import org.apache.spark.SparkContextobject TransformationOperation {def main(args: Array[String]) {// map() // filter() // flatMap() // groupByKey() // reduceByKey() // sortByKey() // join() }def map() {val conf = new SparkConf().setAppName("map").setMaster("local") val sc = new SparkContext(conf)val numbers = Array(1, 2, 3, 4, 5)val numberRDD = sc.parallelize(numbers, 1) val multipleNumberRDD = numberRDD.map { num => num * 2 } multipleNumberRDD.foreach { num => println(num) } }def filter() {val conf = new SparkConf().setAppName("filter").setMaster("local")val sc = new SparkContext(conf)val numbers = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)val numberRDD = sc.parallelize(numbers, 1)val evenNumberRDD = numberRDD.filter { num => num % 2 == 0 }evenNumberRDD.foreach { num => println(num) } }def flatMap() {val conf = new SparkConf().setAppName("flatMap") .setMaster("local") val sc = new SparkContext(conf) val lineArray = Array("hello you", "hello me", "hello world") val lines = sc.parallelize(lineArray, 1)val words = lines.flatMap { line => line.split(" ") } words.foreach { word => println(word) }}def groupByKey() {val conf = new SparkConf().setAppName("groupByKey") .setMaster("local") val sc = new SparkContext(conf)val scoreList = Array(Tuple2("class1", 80), Tuple2("class2", 75),Tuple2("class1", 90), Tuple2("class2", 60))val scores = sc.parallelize(scoreList, 1) val groupedScores = scores.groupByKey() groupedScores.foreach(score => { println(score._1); score._2.foreach { singleScore => println(singleScore) };println("=============================") })}def reduceByKey() {val conf = new SparkConf().setAppName("groupByKey") .setMaster("local") val sc = new SparkContext(conf)val scoreList = Array(Tuple2("class1", 80), Tuple2("class2", 75),Tuple2("class1", 90), Tuple2("class2", 60))val scores = sc.parallelize(scoreList, 1) val totalScores = scores.reduceByKey(_ + _) totalScores.foreach(classScore => println(classScore._1 + ": " + classScore._2)) }def sortByKey() {val conf = new SparkConf().setAppName("sortByKey") .setMaster("local") val sc = new SparkContext(conf)val scoreList = Array(Tuple2(65, "leo"), Tuple2(50, "tom"), Tuple2(100, "marry"), Tuple2(85, "jack")) val scores = sc.parallelize(scoreList, 1) val sortedScores = scores.sortByKey(false)sortedScores.foreach(studentScore => println(studentScore._1 + ": " + studentScore._2)) }def join() {val conf = new SparkConf().setAppName("join") .setMaster("local") val sc = new SparkContext(conf)val studentList = Array(Tuple2(1, "leo"),Tuple2(2, "jack"),Tuple2(3, "tom"));val scoreList = Array(Tuple2(1, 100),Tuple2(2, 90),Tuple2(3, 60));val students = sc.parallelize(studentList);val scores = sc.parallelize(scoreList);val studentScores = students.join(scores) studentScores.foreach(studentScore => { println("student id: " + studentScore._1);println("student name: " + studentScore._2._1)println("student socre: " + studentScore._2._2) println("=======================================") }) }def cogroup() {}}
这篇关于spark RDD transformation操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!