数据分析师拯救猪队友的操作指南

2024-05-08 23:58

本文主要是介绍数据分析师拯救猪队友的操作指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来,陈老师把那句没说出的买马匹替大家说了:做业务、做业务,连自己要做成啥样都不知道,还做个毛线啊!脑子都去哪里了!不知道早问啊,现在都搞完了,拉了一裤裆了,擦屁股想到老子了……

咋整?我们今天详细整一整。

不带脑子?不是蠢就是坏

为什么会这样?其一就是:。很多人干活就是不带脑子。确实有很多公司的运营、策划、产品经理,干活就找模板,想创意就抄竞品,其他啥都不会。

你问他为什么干?

他回答:

  1. 过去是这么干的,今年也这么干;
  2. 我看人家这么干,我也这么干好了;
  3. 老夫从业十年都是这么干,为啥不继续干;
  4. 这是老板命令的,我也不知道,我也不敢问。

至于这么干行不行、会干成啥样、干不好了还能咋样,完全没思考过。如果业绩风调雨顺,就你好我好大家好。如果业绩不行,就开始怪大环境,怪对手太凶猛,怪公司没投入,怪领导瞎指挥。最后一句:“这个得用人工智能大数据分析下”,把烫手山芋丢过来了……

╮(╯▽╰)╭

还有一类就是:。自己写目标怕完成不了,于是故意留白,等着“人工智能大数据分析一下”。刚好新入职的小伙子信了!还真以为人工智能模型能搞掂,两者一拍即合。

最后的结果:

  • 如果分析出来效果特别好,老板质疑!丫就甩锅给数据分析师,说:我看不懂呀,都是数据分析搞得;
  • 如果分析出来效果不好,丫就站出来说:是不是分析的不够深入,是不是分析的不够全面,是不是还少了考虑行业、宏观、用户等深层次影响?

总之你拿回去改,你没有分析到位!

(▼ヘ▼#)

总之,这些乱七八糟事是我们不想面对的。可如果事已至此,队友真的就没定目标,并且良心没有大大滴坏啦,想一起补救,咋办呢?

破局关键:找参照物

想事后补救,最关键的是:找参照物。在事后补一个评价标准。这样做颇有:“先射箭再画靶子”的味道,是非常不科学的。但是总好过没有评价标准。因为如果没有评价标准,单纯的计算活动中业绩、用户、销量等数据,会引发一系列的问题:

你看,完全扯不清楚。

这还是业绩类活动。如果是任务类的,比如增加用户量、清库存之类,就更扯不清了。到底增加多少用户才满意?增长上限是什么?这一炮把钱都花了剩下几个月咋办?清库存反正都要清啊,凭什么说你活动做得好?一件都交代不清楚。

所以切记切记:先找参照物,评定对错好坏,再分析为什么会好/为什么会坏,有多少改善空间。这样做最清晰,最有效率,能减少很多毫无意义的扯皮。

隐藏的刚性目标

本篇例子是促销活动,从逻辑上讲,促销活动是一定会拉动销量的,毕竟是砸了真金白银的。问题的关键是:增加的销量对不对的起投入的成本。这也意味着,促销活动都是隐含了刚性目标的:

  1. 销售额比没促销涨
  2. 活动期收入+活动成本,大于活动销量增长

具体例子看下图:

如果做了活动反而比没做还差!活动参与的人压根没几个!那做的是个呀,多明显的问题。

BUT,一般这时候,业务部门会跑出来强行洗地:“做了活动更差,是因为不做活动会更更更差”。这种洗地是毫无节操的,典型的做烂了还不认的行为,你咋不说你不做活动地球就爆炸呢。

这时分两种情况。如果是上图1走势,业绩虽然持续下滑,但是跌的轻了,这时候还能洗洗地。如果是上图2走势,正常周期波动,丫做了活动业绩反而跌了,那就是活动做烂了,洗都没得洗。

这时候送给业务方的就八个字:下跪认错,低头挨打。

其他事后补目标的方法

当然,大部分促销活动,丢钱下去,还是能见到一点水花的,业绩、用户等等指标还是在涨的。这时候可以用其他方法,事后补个目标。具体的,要看过往活动的开展情况和活动形式。

情况一:过往没有活动

常见于首次进行活动,或过去很长一段时间内没有活动,这时候可以选一个同活动时间一样长的时间段,做参照物,看看活动整体上拉升多少。再拆开看参与活动的各地区,各用户群体差异。

这样做,背后的业务含义是:我们拿整体水平做标杆,看怎么改进做比整体水平低的。通过这种对比,就能暴露活动内能优化的点。同时,既然是首次做,就把本次整体水平保留下来,作为以后的标杆,下次就不纠结了。

情况二:过往没有活动,且周期性波动

在情况一基础上,如果活动影响的业务,本身有周期性波动(如上图所示),那活动有可能有水涨船高的效果,这时可以根据上一周期增长量做自然增长,扣除这一部分后再做评价。

情况三:过往有活动,且仅有单一活动

这时候可以拿上次活动作为参照物,先计算活动投入产出比和带来总效果。结合这两个指标可以判断:继续做活动是亏是赚,活动影响力极限能去到那里。

这样能对活动做个定性:越做越好/越做越差。有个这个判断,后续再看具体细节怎么改善,也有了参照物,可以细致分析。

情况四:过往有活动,且多活动叠加

这时候很难算清楚每个活动的贡献(也正因为此,很多业务方放弃了设目标,可回头又要单独评估,糟心)这时候最好的处理方法是:先看整体的投入产出,定个大基调:本期内活动组合效果高/低

有了这个基调,后续就能做结构分析,看看每个小活动单独影响面,从而判断对于众多子活动到底是增还是删。(如下图)

根本杜绝事后补救的办法:

吐槽归吐槽,可能有的业务部门真的不会定目标……这时候就得认真教他们,好在陈老师在双十一的时候专门有一篇分享,有兴趣的看:双十一备战手册

从本质上看,业绩是做出来的,不是算出来。事前定目标只是为了更好激励自己行动,促成更好效果,真正需要复杂分析的是事后的总结。所以业务部门的完全没必要在这里背很大心理压力。话说回来,真业绩做不好,还不是自己挨板子,何苦呢。

一个特别提醒的问题

有一类目标要特别小心,叫“满意度”。一般像用户数,付费用户数,销售额,销售收入,这些指标都是系统记录的,含义很清晰,拿来当目标是完全没问题的。但是“满意度”这种无法直接记录、含义不清晰的玩意,要特别小心。

  • 首先,什么叫满意度很难扯清楚。5星好评的算满意?那我花10元优惠券买来的好评算不算满意?先给5星又来投诉的算不算满意?不留言的算不算满意?
  • 其次,满意度很难用系统数据量化。沉默大多数问题,导致系统只能记录到投诉、差评这种极端情况,大部分用户没有可靠的系统数据。用抽样问卷,那数据质量你懂的……
  • 再次,满意度和销售收入、用户量这种终极目标没啥直接关系。越骂越火这种事在很多行业都司空见惯了。

这种定义不清、数据质量不稳定、容易被操控的指标还有很多,类似:NPS、品牌影响力、品牌美誉度、市场占有率(因为行业数据要第三方提供,第三方你懂的)事前不谈清楚口径,事后又是无休无止扯皮的地方。

偏偏业务方特别喜欢写这些话“拉动新用户注册,提升品牌影响力”……这就是站着说话不腰疼了。建议有类似需求的,让他们找管市场调查的同事或者找第三方去搞,我们不蹚这趟浑水。

终极解决方案

最终极的办法,当然是数据分析师参与到策划过程中去,一开始就给一些专业指导,帮助大家理清思路。并且还能把过去一些失败项目的数据情况分享出来,提升策划质量。

如果有机会参会的话,大家可以按以下话术,确认活动信息。

如果业务方说:没有设参照组,没有设参照期,该怎么设来问数据分析师,这样最好不过了!我们可以结合实际情况提供专业意见,省的麻烦。

然而有些同学会问:这种方法针对一次性活动管用,有些活动是长年做的,比如会员制度,比如新手指引,这种又该怎么评估呢?我们以后继续分享。

这篇关于数据分析师拯救猪队友的操作指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/971808

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav