Pytorch常用的函数(九)torch.gather()用法

2024-05-08 20:20

本文主要是介绍Pytorch常用的函数(九)torch.gather()用法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pytorch常用的函数(九)torch.gather()用法

torch.gather() 就是在指定维度上收集value。

torch.gather() 的必填也是最常用的参数有三个,下面引用官方解释:

  • input (Tensor) – the source tensor
  • dim (int) – the axis along which to index
  • index (LongTensor) – the indices of elements to gather

一句话概括 gather 操作就是:根据 index ,在 inputdim 维度上收集 value

1、举例直观理解

# 1、我们有input_tensor如下
>>> input_tensor = torch.arange(24).reshape(2, 3, 4)
tensor([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])# 2、我们有index_tensor如下
>>> index_tensor = torch.tensor([[[0, 0, 0, 0],[2, 2, 2, 2]],[[0, 0, 0, 0],[2, 2, 2, 2]]]
)	# 3、我们通过torch.gather()函数获取out_tensor
>>> out_tensor = torch.gather(input_tensor, dim=1, index=index_tensor)
tensor([[[ 0,  1,  2,  3],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[20, 21, 22, 23]]])

我们以out_tensor中[0,1,0]=8为例,解释下如何利用dim和index,从input_tensor中获得8。

在这里插入图片描述

根据上图,我们很直观的了解根据 index ,在 inputdim 维度上收集 value的过程。

  • 假设 inputindex 均为三维数组,那么输出 tensor 每个位置的索引是列表 [i, j, k] ,正常来说我们直接取 input[i, j, k] 作为 输出 tensor 对应位置的值即可;
  • 但是由于 dim 的存在以及 input.shape 可能不等于 index.shape ,所以直接取值可能就会报错 ;
  • 所以我们是将索引列表的相应位置替换为 dim ,再去 input 取值。在上面示例中,由于dim=1,那么我们就替换索引列表第1个值,即[i,dim,k],因此由原来的[0,1,0]替换为[0,2,0]后,再去input_tensor中取值。
  • pytorch官方文档的写法如下,同一个意思。
out[i][j][k] = input[index[i][j][k]][j][k]  # if dim == 0
out[i][j][k] = input[i][index[i][j][k]][k]  # if dim == 1
out[i][j][k] = input[i][j][index[i][j][k]]  # if dim == 2

2、反推法再理解

# 1、我们有input_tensor如下
>>> input_tensor = torch.arange(24).reshape(2, 3, 4)
tensor([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])# 2、假设我们要得到out_tensor如下
>>> out_tensor
tensor([[[ 0,  1,  2,  3],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[20, 21, 22, 23]]])# 3、如何知道dim 和 index_tensor呢? 
# 首先,我们要记住:out_tensor的shape = index_tensor的shape# 从 output_tensor 的第一个位置开始:
# 此时[i, j, k]一样,看不出来 dim 应该是多少
output_tensor[0, 0, :] = input_tensor[0, 0, :] = 0
# 同理可知,此时index都为0
output_tensor[0, 0, 1] = input_tensor[0, 0, 1] = 1
output_tensor[0, 0, 2] = input_tensor[0, 0, 2] = 2
output_tensor[0, 0, 3] = input_tensor[0, 0, 3] = 3# 我们从下一行的第一个位置开始:
# 这里我们看到维度 1 发生了变化,1 变成了 2,所以 dim 应该是 1,而 index 应为 2
output_tensor[0, 1, 0] = input_tensor[0, 2, 0] = 8
# 同理可知,此时index都为2
output_tensor[0, 1, 1] = input_tensor[0, 2, 1] = 9
output_tensor[0, 1, 2] = input_tensor[0, 2, 2] = 10
output_tensor[0, 1, 3] = input_tensor[0, 2, 3] = 11# 根据上面推导我们易知dim=1,index_tensor为:
>>> index_tensor = torch.tensor([[[0, 0, 0, 0],[2, 2, 2, 2]],[[0, 0, 0, 0],[2, 2, 2, 2]]]
)	

3、实际案例

在大神何凯明MAE模型(Masked Autoencoders Are Scalable Vision Learners)源码中,多次使用了torch.gather() 函数。

  • 论文链接:https://arxiv.org/pdf/2111.06377
  • 官方源码:https://github.com/facebookresearch/mae

在MAE中根据预设的掩码比例(paper 中提倡的是 75%),使用服从均匀分布的随机采样策略采样一部分 tokens 送给 Encoder,另一部分mask 掉。采样25%作为unmasked tokens过程中,使用了torch.gather() 函数。

# models_mae.pyimport torchdef random_masking(x, mask_ratio=0.75):"""Perform per-sample random masking by per-sample shuffling.Per-sample shuffling is done by argsort random noise.x: [N, L, D], sequence"""N, L, D = x.shape  # batch, length, dimlen_keep = int(L * (1 - mask_ratio))  # 计算unmasked的片数# 利用0-1均匀分布进行采样,避免潜在的【中心归纳偏好】noise = torch.rand(N, L, device=x.device)  # noise in [0, 1]# sort noise for each sample【核心代码】ids_shuffle = torch.argsort(noise, dim=1)  # ascend: small is keep, large is removeids_restore = torch.argsort(ids_shuffle, dim=1)# keep the first subsetids_keep = ids_shuffle[:, :len_keep]# 利用torch.gather()从源tensor中获取25%的unmasked tokensx_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))# generate the binary mask: 0 is keep, 1 is removemask = torch.ones([N, L], device=x.device)mask[:, :len_keep] = 0# unshuffle to get the binary maskmask = torch.gather(mask, dim=1, index=ids_restore)return x_masked, mask, ids_restoreif __name__ == '__main__':x = torch.arange(64).reshape(1, 16, 4)random_masking(x)
# x模拟一张图片经过patch_embedding后的序列
# x相当于input_tensor
# 16是patch数量,实际上一般为(img_size/patch_size)^2 = (224 / 16)^2 = 14*14=196
# 4是一个patch中像素个数,这里只是模拟,实际上一般为(in_chans * patch_size * patch_size = 3*16*16 = 768)
>>> x = torch.arange(64).reshape(1, 16, 4) 
tensor([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11],[12, 13, 14, 15],[16, 17, 18, 19], # 4[20, 21, 22, 23],[24, 25, 26, 27],[28, 29, 30, 31],[32, 33, 34, 35],[36, 37, 38, 39],[40, 41, 42, 43], # 10[44, 45, 46, 47],[48, 49, 50, 51], # 12[52, 53, 54, 55], # 13[56, 57, 58, 59],[60, 61, 62, 63]]])
# dim=1, index相当于index_tensor
>>> index
tensor([[[10, 10, 10, 10],[12, 12, 12, 12],[ 4,  4,  4,  4],[13, 13, 13, 13]]])# x_masked(从源tensor即x中,随机获取25%(4个patch)的unmasked tokens)     
>>> x_masked相当于out_tensor
tensor([[[40, 41, 42, 43],[48, 49, 50, 51],[16, 17, 18, 19],[52, 53, 54, 55]]])

这篇关于Pytorch常用的函数(九)torch.gather()用法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/971338

相关文章

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

python3 gunicorn配置文件的用法解读

《python3gunicorn配置文件的用法解读》:本文主要介绍python3gunicorn配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python3 gunicorn配置文件配置文件服务启动、重启、关闭启动重启关闭总结python3 gun

MySQL 中的 LIMIT 语句及基本用法

《MySQL中的LIMIT语句及基本用法》LIMIT语句用于限制查询返回的行数,常用于分页查询或取部分数据,提高查询效率,:本文主要介绍MySQL中的LIMIT语句,需要的朋友可以参考下... 目录mysql 中的 LIMIT 语句1. LIMIT 语法2. LIMIT 基本用法(1) 获取前 N 行数据(

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

C#中DrawCurve的用法小结

《C#中DrawCurve的用法小结》本文主要介绍了C#中DrawCurve的用法小结,通常用于绘制一条平滑的曲线通过一系列给定的点,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 如何使用 DrawCurve 方法(不带弯曲程度)2. 如何使用 DrawCurve 方法(带弯曲程度)3.使用Dr

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

如何在pycharm安装torch包

《如何在pycharm安装torch包》:本文主要介绍如何在pycharm安装torch包方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录在pycharm安装torch包适http://www.chinasem.cn配于我电脑的指令为适用的torch包为总结在p

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI