损失一件外套?

2024-05-08 17:20
文章标签 损失 一件 外套

本文主要是介绍损失一件外套?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2024/05/07,晴

碎碎念一波!

早上洗漱完要出门时,发现自己昨天穿的外套不见了!!!外套上身效果很不错,买了1年多穿的频率非常高,现在丢了还真挺可惜。

外套长这样(22年10月购买)

衣服口袋有一个耳机,连带丢失。。。

损失大了

事情经过

昨晚21:20-22:00去学校操场,活动了下胫骨。活动时将外套放在了,操场的一个架子上。

球场

不知道是记性不好还是咋的了,走的时候忘记取走了。第二天早上10:00到操场去取也已经是空空如也。留我一个人心里悲伤。

操场上空空如也的架子

于是,随眼看见一个清洁嬢嬢上去询问衣服下落,他说早一点的时候还看见的。说被其它嬢嬢扔到垃圾桶里面去了,于是我看了下附近垃圾桶,也是空空如也。之后嬢嬢经过电话询问其它嬢嬢说是垃圾桶里面垃圾已经被打包到垃圾车上带走了。破案了哭死了!!刻骨铭心了!!

最后,一个朋友说得好。再买,花钱消灾!!

点赞

End

Eed

这篇关于损失一件外套?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/970952

相关文章

SigLIP——采用sigmoid损失的图文预训练方式

SigLIP——采用sigmoid损失的图文预训练方式 FesianXu 20240825 at Wechat Search Team 前言 CLIP中的infoNCE损失是一种对比性损失,在SigLIP这个工作中,作者提出采用非对比性的sigmoid损失,能够更高效地进行图文预训练,本文进行介绍。如有谬误请见谅并联系指出,本文遵守CC 4.0 BY-SA版权协议,转载请联系作者并注

日本某地发生了一件谋杀案,警察通过排查确定杀人凶手必为4个 嫌疑犯的一个。以下为4个嫌疑犯的供词。

日本某地发生了一件谋杀案,警察通过排查确定杀人凶手必为4个 嫌疑犯的一个。以下为4个嫌疑犯的供词。 A说:不是我。 B说:是C。 C说:是D。 D说:C在胡说 已知3个人说了真话,1个人说的是假话。 现在请根据这些信息,写一个程序来确定到底谁是凶手。  static void Main()         {             int killer = 0;             fo

逐行讲解Transformer的代码实现和原理讲解:计算交叉熵损失

LLM模型:Transformer代码实现和原理讲解:前馈神经网络_哔哩哔哩_bilibili 1 计算交叉熵目的 计算 loss = F.cross_entropy(input=linear_predictions_reshaped, target=targets_reshaped) 的目的是为了评估模型预测结果与实际标签之间的差距,并提供一个量化指标,用于指导模型的训练过程。具体来说,交叉

【深度学习 误差计算】10分钟了解下均方差和交叉熵损失函数

常见的误差计算函数有均方差、交叉熵、KL 散度、Hinge Loss 函数等,其中均方差函数和交叉熵函数在深度学习中比较常见,均方差主要用于回归问题,交叉熵主要用于分类问题。下面我们来深刻理解下这两个概念。 1、均方差MSE。 预测值与真实值之差的平方和,再除以样本量。 均方差广泛应用在回归问题中,在分类问题中也可以应用均方差误差。 2、交叉熵 再介绍交叉熵损失函数之前,我们首先来介绍信息

Anchor Alignment Metric来优化目标检测的标签分配和损失函数。

文章目录 背景假设情况任务和目标TaskAligned方法的应用1. **计算Anchor Alignment Metric**2. **动态样本分配**3. **调整损失函数** 示例总结 背景 假设我们在进行目标检测任务,并且使用了YOLOv8模型。我们希望通过TaskAligned方法来优化Anchor与目标的匹配程度,从而提升检测效果。 假设情况 图像: 一张包含

在目标检测模型中使用正样本和负样本组成的损失函数。

文章目录 背景例子说明1. **样本和标签分配**2. **计算损失函数**3. **组合损失函数** 总结 背景 在目标检测模型中,损失函数通常包含两个主要部分: 分类损失(Classification Loss):用于评估模型对目标类别的预测能力。定位损失(Localization Loss):用于评估模型对目标位置的预测准确性。 例子说明 假设我们有一个目标检测模

逻辑回归-损失函数详解

有监督学习 机器学习分为有监督学习,无监督学习,半监督学习,强化学习。对于逻辑回归来说,就是一种典型的有监督学习。  既然是有监督学习,训练集自然可以用如下方式表述:  {(x1,y1),(x2,y2),⋯,(xm,ym)} 对于这m个训练样本,每个样本本身有n维特征。再加上一个偏置项 x0 , 则每个样本包含n+1维特征:  x=[x0,x1,x2,⋯,xn

机器学习的损失函数

损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子: 其中,前面的均值函数表示的是经验风险函数,L代表的是损失函数,后面的是正

神经网络多分类任务的损失函数——交叉熵

神经网络多分类任务的损失函数——交叉熵 神经网络解决多分类问题最常用的方法是设置n个输出节点,其中n为类别的个数。对于每一个样例,神经网络可以得到的一个n维数组作为输出结果。数组中的每一个维度(也就是每一个输出节点)对应一个类别。在理想情况下,如果一个样本属于类别k,那么这个类别所对应的输出节点的输出值应该为1,而其他节点的输出都为0。 以识别手写数字为例,0~9共十个类别。识别数字1,神经网

Sentence-BERT实现文本匹配【对比损失函数】

引言 还是基于Sentence-BERT架构,或者说Bi-Encoder架构,但是本文使用的是参考2中提出的对比损失函数。 架构 如上图,计算两个句嵌入 u \pmb u u和 v \pmb v v​之间的距离(1-余弦相似度),然后使用参考2中提出的对比损失函数作为目标函数: L = y × 1 2 ( distance ( u , v ) ) 2 + ( 1 − y ) × 1 2