本文主要是介绍go动态创建/增加channel并处理数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
背景描述
有一个需求,大概可以描述为:有多个websocket连接,因此消息会并发地发送过来,这些消息中有一个标志可以表明是哪个连接发来的消息,但只有收到消息后才能建立channel或写入已有channel,在收消息前无法预先创建channel
解决过程(可直接阅读最终版)
初版:直接写入
因为对数据量错误预估(以为数据量不大),一开始我是用的mysql直接写入,每次收到ws消息立即处理,可测试中发现因数据量过多且都会操作同一行数据,出现了资源竞争,导致死锁。
第二版:增加锁
在发现出现数据竞争后,我第一反应是增加读写锁。读写锁的代码类似以下示例:
package mainimport ("database/sql""fmt""sync"_ "github.com/go-sql-driver/mysql"
)var (db *sql.DBmu sync.RWMutex
)func init() {var err errordb, err = sql.Open("mysql", "username:password@tcp(localhost:3306)/dbname")if err != nil {panic(err)}
}func main() {defer db.Close()// 读取数据go readData()// 写入数据go writeData()// 保持主线程运行select {}
}func readData() {for {mu.RLock()rows, err := db.Query("SELECT * FROM table_name")mu.RUnlock()if err != nil {fmt.Println("Error reading data:", err)continue}defer rows.Close()// 处理查询结果// ...// 睡眠一段时间,模拟读操作的持续性// 请注意,这是一个简单示例,实际应用中可能需要更复杂的逻辑// 或使用定时器进行控制}
}func writeData() {for {mu.Lock()_, err := db.Exec("INSERT INTO table_name (column1, column2) VALUES (?, ?)", value1, value2)mu.Unlock()if err != nil {fmt.Println("Error writing data:", err)continue}// 睡眠一段时间,模拟写操作的持续性// 请注意,这是一个简单示例,实际应用中可能需要更复杂的逻辑// 或使用定时器进行控制}
}
但是代码里对数据库的操作非常频繁且混乱,加了读写锁后经常出现请求很慢的情况,考虑其他方案
第三版 使用事务
使用事务代码忽略,最终发现,因为事务过长,导致出现了重复写的问题,考虑其他方案
第四版 map
通过一个二维的map来存储数据,每当数据存满10条就处理,当然毫不意外的,出现了map的竞争。map也是可以用锁的,但是这里是二维的map,加上两层锁之后使得效率极低,而且依旧有概率出现map竞争导致报错
此外,还可以考虑使用redis设置锁,直接set就行了,但是因为环境不支持redis,此方案弃用
最终版 动态channel
出现以上问题的根本原因是消费太快,其实完全可以把每个ws连接的数据都写到各自的channel里,同时设置每个channel都累积10条再消费,当然还需要一个处理机制,如果超过10s也消费一次。
启动"生产者"、“消费者”
在当前环境中,生产者就是每次从ws中读到数据往动态channel中写入,消费者就是不断获取有哪些channel,以及从channel中读数据,在ws写入时的处理逻辑大概可以简化为如下demo:
package testimport ("context""encoding/json""github.com/gin-gonic/gin""github.com/gorilla/websocket"log "github.com/sirupsen/logrus""net/http""sync"
)// RequestTemplate 请求模板
type RequestTemplate struct {Op string `json:"op"` // 操作Id int `json:"id"` // 唯一id标识Time string `json:"time"` // 时间,用秒级时间戳,字符串包裹Data *RequestTemplateData `json:"data"` // 请求数据Code int `json:"code"` // 状态码
}// RequestTemplateData 请求中data包含的部分,实际这里是很复杂的结构,之前超时/死锁也是因为这里处理逻辑比较复杂,但是这篇博客的演示重点不是这个,因此简略为id和请求ip
type RequestTemplateData struct {ConnIp string `json:"conn_ip"` // 请求ipId int `json:"id"` // 唯一id标识
}// ConnInfo 具体的连接信息
type ConnInfo struct {Conn *websocket.Conn `json:"conn"` // websocket连接Ctx context.Context `json:"ctx"` // 连接上下文CtxCancel context.CancelFunc `json:"cancel"` // 连接上下文cancel functionIp string `json:"ip"` // 连接的手机端ipId int `json:"id"` // 唯一id标识
}var AllConns = make(map[string]*ConnInfo) //创建字典集合存储连接信息// Start 启动
func Start() {//处理ws的连接http.HandleFunc("/ws", HandleMsg)// //监听7001端口号,作为websocket连接的服务log.Info("Server started on :7001")log.Fatal(http.ListenAndServe(":7001", nil))
}// ChannelStorage channel数据
type ChannelStorage struct {sync.RWMutexchannels map[string]chan *RequestTemplateData
}var ConnRequestData map[int]*RequestTemplateDatavar upgrader = websocket.Upgrader{CheckOrigin: func(r *http.Request) bool {return true},
}// HandleMsg 处理ws连接,每来一个新客户端请求就建立一个新连接
func HandleMsg(w http.ResponseWriter, r *http.Request) {conn, err := upgrader.Upgrade(w, r, nil) // 协议升级,这里也可以直连if err != nil {log.Error(err)return}//获取连接ip,这里是为了区分每个连接connIp := conn.RemoteAddr().String()// 这里是为了后续关闭channelrootCtx := context.Background()ctx, cancel := context.WithCancel(rootCtx)//加入连接AllConns[connIp] = &ConnInfo{Conn: conn, // 客户端ws链接对象Ctx: ctx, // 连接上下文CtxCancel: cancel, // 取消连接上下文}defer func() {// 如果断开连接,删除数据if AllConns[connIp] != nil {AllConns[connIp].CtxCancel()delete(ConnRequestData, AllConns[connIp].Id)go SetDoneData(AllConns[connIp].Id, conn) // 这里对结束做处理}delete(AllConns, conn.RemoteAddr().String())err = conn.Close()if err != nil {return}log.Error("HandleMsg异常,开始defer处理:", err)if err := recover(); err != nil {log.Error("websocket连接异常,已断开:", err)}}()log.WithFields(log.Fields{"connIp": connIp,}).Info("沙箱已连接")reqCh := &ChannelStorage{}go reqCh.ResultConsumer(ctx) // 这里是消费者//循环读取ws客户端的消息for {// 读取消息_, msg, err := conn.ReadMessage()if err != nil {log.WithFields(log.Fields{"connIp": connIp,}).WithError(err).Error("读取websocket的消息失败")if AllConns[connIp] != nil {delete(ConnRequestData, AllConns[connIp].Id)go SetDoneData(AllConns[connIp].Id, conn) // 连接断开设置状态为结束}// 断开ws连接conn.Close()delete(AllConns, conn.RemoteAddr().String())return}//msg []byte转stringmsgStr := string(msg)log.Info("收到消息为:", msgStr)//反序列化消息为结构体requestData := RequestTemplate{}if err := json.Unmarshal(msg, &requestData); err != nil {conn.WriteJSON(gin.H{"id": "未知", "op": "未知", "error": "cmd通信的请求参数有误,无法json decode"})log.Error("json_decode cmd命令的请求参数时出错:", err)continue}dataInfo := requestData.Data// 这里实际上有很多操作,简写为两种if requestData.Op != "" {switch requestData.Op {// 收到报告case "report":go reqCh.Produce(dataInfo) // "生产者",发送一条消息// 已完成case "done":go CheckDone(dataInfo, conn) // 做完成的处理default:log.Error("未识别的命令:", msgStr)}}}
}
有一个for循环在持续监听ws消息,消费者只启动一次,这里重点就是生产和消费如何实现
“生产者”
“生产者”要做的事就是:
1 每当收到ws消息后,解析,拿到唯一id(这个唯一是指这个连接下的所有上报消息的id都是相同的)
2 判断这个“唯一id”是否已经创建了channel,若创建了则不需要创建,直接写入channel,若未创建则新建channel
以下是生产者的demo:
// GetChannel 获取通道
func (cs *ChannelStorage) GetChannel(key string) chan *RequestTemplateData {cs.RLock()defer cs.RUnlock()return cs.channels[key]
}// CreateChannel 创建通道并存储到 map 中
func (cs *ChannelStorage) CreateChannel(key string) chan *RequestTemplateData {cs.Lock()defer cs.Unlock()if cs.channels == nil {cs.channels = make(map[string]chan *RequestTemplateData, 800)}ch := make(chan *RequestTemplateData, 10)cs.channels[key] = chreturn ch
}// Produce 往上报channel中写数据
func (cs *ChannelStorage) Produce(requestData *RequestTemplateData) {defer func() {if err := recover(); err != nil {log.Info("_____________recover CaseResultAdd error________: ", err)}}()// 创建存储通道的结构体实例chanelKey := strconv.Itoa(requestData.Id)channel := cs.GetChannel(chanelKey)if channel == nil {channel = cs.CreateChannel(chanelKey)}// 直接往channel里面塞if channel != nil {channel <- requestData}
}
消费者
消费者由于只启动一次,但后续可能会有新的channel,因此需要增加一个获取所有连接的方法:
消费者demo:
func (cs *ChannelStorage) ResultConsumer(ctx context.Context) {defer func() {if err := recover(); err != nil {log.Info("_____________recover CaseResultConsumer error________: ", err)}}()for {select {case <-ctx.Done():log.Info("websocket断开连接,消费者协程退出...")returndefault:cs.processAllChannels(ctx) // 传入 context.Contexttime.Sleep(2 * time.Second) // 控制处理频率}}
}// processAllChannels 获取所有channel
func (cs *ChannelStorage) processAllChannels(ctx context.Context) {cs.RLock()defer cs.RUnlock()var wg sync.WaitGroup // 用于等待所有通道处理完毕for chName, channel := range cs.channels {wg.Add(1)go func(chName string, channel chan *RequestTemplateData) {defer wg.Done()cs.processChannel(chName, channel, ctx)}(chName, channel)}wg.Wait() // 等待所有通道处理完毕
}
func (cs *ChannelStorage) processChannel(chName string, channel chan *RequestTemplateData, ctx context.Context) {const batchSize = 10 // 每次处理的数据量var messages []*RequestTemplateDatatargetMsgOverTime := 10 * time.Second // 超时时间for {select {case caseMsg := <-channel:messages = append(messages, caseMsg) // 将接收到的消息放入 messages 切片中if len(messages) == batchSize {tmpMessages := messagesmessages = nilprocessMessages(tmpMessages)}case <-time.After(targetMsgOverTime):log.Info("Timeout reached. Processing...")if len(messages) > 0 {tmpMessages := messagesmessages = nillog.Info("Processing remaining messages for channel:", chName)processMessages(tmpMessages)}case <-ctx.Done(): // 如果收到上下文取消信号,退出函数log.Info("______________________error__________cancel______")return}}
}func processMessages(messages []*RequestTemplateData) {// 在这里处理消息就是批量的了
}
这篇关于go动态创建/增加channel并处理数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!