零基础代码随想录【Day27】|| 39. 组合总和,40.组合总和II, 131.分割回文串

2024-05-07 18:44

本文主要是介绍零基础代码随想录【Day27】|| 39. 组合总和,40.组合总和II, 131.分割回文串,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

DAY27

39. 组合总和

解题思路&代码

40.组合总和II

解题思路&代码

131.分割回文串

解题思路&代码


DAY27

39. 组合总和

力扣题目链接(opens new window)

给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的数字可以无限制重复被选取。

说明:

  • 所有数字(包括 target)都是正整数。
  • 解集不能包含重复的组合。

示例 1:

  • 输入:candidates = [2,3,6,7], target = 7,
  • 所求解集为: [ [7], [2,2,3] ]

本题是 集合里元素可以用无数次,那么和组合问题的差别 其实仅在于 startIndex上的控制

题目链接/文章讲解:代码随想录

视频讲解:带你学透回溯算法-组合总和(对应「leetcode」力扣题目:39.组合总和)| 回溯法精讲!_哔哩哔哩_bilibili

解题思路&代码

思路:

题目中的无限制重复被选取,吓得我赶紧想想 出现0 可咋办,然后看到下面提示:1 <= candidates[i] <= 200,我就放心了。

本题和77.组合 (opens new window),216.组合总和III (opens new window)的区别是:本题没有数量要求,可以无限重复,但是有总和的限制,所以间接的也是有个数的限制。

注意图中叶子节点的返回条件,因为本题没有组合数量要求,仅仅是总和的限制,所以递归没有层数的限制,只要选取的元素总和超过target,就返回!

而在77.组合 (opens new window)和216.组合总和III (opens new window)中都可以知道要递归K层,因为要取k个元素的组合

class Solution {public List<List<Integer>> combinationSum(int[] candidates, int target) {List<List<Integer>> res = new ArrayList<>();Arrays.sort(candidates);// 先进行排序backtracking(res, new ArrayList<>(), candidates, target, 0, 0);return res;}public void backtracking (List<List<Integer>> res, List<Integer> path, int[] candidates, int target, int sum, int idx) {// 找到了数字和为 target 的组合if (sum == target) {res.add(new ArrayList<> (path));return;}for (int i = idx; i < candidates.length; i++) {// 如果 sum + candidates[i] > target 就终止遍历if (sum + candidates[i] > target) break;path.add(candidates[i]);sum += candidates[i];backtracking(res, path, candidates, target, sum, i);sum -= candidates[i];path.remove(path.size() -1); // 回溯,移除路径 path 最后一个元素}}
}

40.组合总和II

力扣题目链接(opens new window)

给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用一次。

说明: 所有数字(包括目标数)都是正整数。解集不能包含重复的组合。

  • 示例 1:
  • 输入: candidates = [10,1,2,7,6,1,5], target = 8,
  • 所求解集为:
[[1, 7],[1, 2, 5],[2, 6],[1, 1, 6]
]

本题开始涉及到一个问题了:去重。

注意题目中给我们 集合是有重复元素的,那么求出来的 组合有可能重复,但题目要求不能有重复组合。 

题目链接/文章讲解:代码随想录

视频讲解:回溯算法中的去重,树层去重树枝去重,你弄清楚了没?| LeetCode:40.组合总和II_哔哩哔哩_bilibili

解题思路&代码

思路:

本题的难点在于区别2中:集合(数组candidates)有重复元素,但还不能有重复的组合

我们是要同一树层上使用过,还是同一树枝上使用过呢?

回看一下题目,元素在同一个组合内是可以重复的,怎么重复都没事,但两个组合不能相同。

所以我们要去重的是同一树层上的“使用过”,同一树枝上的都是一个组合里的元素,不用去重

树层去重的话,需要对数组排序!

此题还需要加一个bool型数组used,用来记录同一树枝上的元素是否使用过。

class Solution {LinkedList<Integer> path = new LinkedList<>();List<List<Integer>> res = new ArrayList<>();boolean[] used;int sum = 0;public List<List<Integer>> combinationSum2(int[] candidates, int target) {used = new boolean[candidates.length];// 加标志数组,用来辅助判断同层节点是否已经遍历,这样没有遍历的数组元素默认为falseArrays.fill(used, false);// 为了将重复的数字都放到一起,所以先进行排序Arrays.sort(candidates);backTracking(candidates, target, 0);return res;}private void backTracking(int[] candidates, int target, int startIndex) {if (sum == target) {res.add(new ArrayList(path));}for (int i = startIndex; i < candidates.length; i++) {if (sum + candidates[i] > target) {//剪枝操作break;}/** 出现重复节点,同层的第一个节点已经被访问过,所以直接跳过,主要是判断前一个元素是否相同,相同情况下是属于同层所以不能使用(判断是否同层是通过是否发生了回溯判断的),需要跳过,只要树层去重,树枝不用去重*/ if (i > 0 && candidates[i] == candidates[i - 1] && !used[i - 1]) {continue;}used[i] = true;//每次访问了就标记一下与false形成区别sum += candidates[i];path.add(candidates[i]);// 每个节点仅能选择一次,所以从下一位开始backTracking(candidates, target, i + 1);used[i] = false;//回溯一下标记sum -= candidates[i];path.removeLast();}}
}

131.分割回文串

力扣题目链接(opens new window)

给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。

返回 s 所有可能的分割方案。

示例: 输入: "aab" 输出: [ ["aa","b"], ["a","a","b"] ]

本题较难,大家先看视频来理解 分割问题,明天还会有一道分割问题,先打打基础。 

代码随想录

视频讲解:带你学透回溯算法-分割回文串(对应力扣题目:131.分割回文串)| 回溯法精讲!_哔哩哔哩_bilibili

 

解题思路&代码

思路:

切割问题类似组合问题

例如对于字符串abcdef:

  • 组合问题:选取一个a之后,在bcdef中再去选取第二个,选取b之后在cdef中再选取第三个.....。
  • 切割问题:切割一个a之后,在bcdef中再去切割第二段,切割b之后在cdef中再切割第三段.....。

这道题目在leetcode上是中等,但可以说是hard的题目了

那么难究竟难在什么地方呢?

如下几个难点:

  • 切割问题可以抽象为组合问题
  • 如何模拟那些切割线
  • 切割问题中递归如何终止
  • 在递归循环中如何截取子串
  • 如何判断回文 
class Solution {List<List<String>> lists = new ArrayList<>();Deque<String> deque = new LinkedList<>();public List<List<String>> partition(String s) {backTracking(s, 0);return lists;}private void backTracking(String s, int startIndex) {//如果起始位置大于s的大小,说明找到了一组分割方案if (startIndex >= s.length()) {lists.add(new ArrayList(deque));return;}for (int i = startIndex; i < s.length(); i++) {//如果是回文子串,则记录if (isPalindrome(s, startIndex, i)) {String str = s.substring(startIndex, i + 1);// 截取符合要求的子串deque.addLast(str);} else {continue;}//起始位置后移,保证不重复backTracking(s, i + 1);deque.removeLast();}}//判断是否是回文串private boolean isPalindrome(String s, int startIndex, int end) {for (int i = startIndex, j = end; i < j; i++, j--) {if (s.charAt(i) != s.charAt(j)) {return false;}}return true;}
}

这篇关于零基础代码随想录【Day27】|| 39. 组合总和,40.组合总和II, 131.分割回文串的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968085

相关文章

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

csu1328(近似回文串)

题意:求近似回文串的最大长度,串长度为1000。 解题思路:以某点为中心,向左右两边扩展,注意奇偶分开讨论,暴力解即可。时间复杂度O(n^2); 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring>#include<string>#inclu

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d