吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.13-1.14

本文主要是介绍吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.13-1.14,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 第二门课: 改善深层神经网络:超参数调试、正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)
    • 第一周:深度学习的 实践层面 (Practical aspects of Deep Learning)
      • 1.13 梯度检验(Gradient checking)

第二门课: 改善深层神经网络:超参数调试、正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)

第一周:深度学习的 实践层面 (Practical aspects of Deep Learning)

1.13 梯度检验(Gradient checking)

梯度检验帮我们节省了很多时间,也多次帮我发现 backprop 实施过程中的 bug,接下来,我们看看如何利用它来调试或检验 backprop 的实施是否正确。

假设你的网络中含有下列参数, W [ 1 ] W^{[1]} W[1] b [ 1 ] b^{[1]} b[1]…… W [ l ] W^{[l]} W[l] b [ l ] b^{[l]} b[l],为了执行梯度检验,首先要做的就是,把所有参数转换成一个巨大的向量数据,你要做的就是把矩阵𝑊转换成一个向量,把所有𝑊矩阵转换成向量之后,做连接运算,得到一个巨型向量𝜃,该向量表示为参数𝜃,代价函数𝐽是所有𝑊和𝑏的函数,现在你得到了一个𝜃的代价函数𝐽(即𝐽(𝜃))。接着,你得到与𝑊和𝑏顺序相同的数据,你同样可以把 d W [ 1 ] dW^{[1]} dW[1] d b [ 1 ] db^{[1]} db[1]…… d W [ l ] dW^{[l]} dW[l] d b [ l ] db^{[l]} db[l]转换成一个新的向量,用它们来初始化大向量𝑑𝜃,它与𝜃具有相同维度。

同样的,把 d W [ 1 ] dW^{[1]} dW[1]转换成矩阵, d b [ 1 ] db^{[1]} db[1]已经是一个向量了,直到把 d W [ l ] dW^{[l]} dW[l]转换成矩阵,这样所有的𝑑𝑊都已经是矩阵,注意 d W [ 1 ] dW^{[1]} dW[1] W [ 1 ] W^{[1]} W[1]具有相同维度, d b [ 1 ] db^{[1]} db[1] b [ 1 ] b^{[1]} b[1]具有相同维度。经过相同的转换和连接运算操作之后,你可以把所有导数转换成一个大向量𝑑𝜃,它与𝜃具有相同维度,现在的问题是𝑑𝜃和代价函数𝐽的梯度或坡度有什么关系?
在这里插入图片描述
这就是实施梯度检验的过程,英语里通常简称为“grad check”,首先,我们要清楚𝐽是超参数𝜃的一个函数,你也可以将𝐽函数展开为𝐽(𝜃1, 𝜃2, 𝜃3, … … ),不论超级参数向量𝜃的维度是多少,为了实施梯度检验,你要做的就是循环执行,从而对每个𝑖也就是对每个𝜃组成元素计算𝑑𝜃approx[𝑖]的值,我使用双边误差,也就是
d θ a p p r o x [ i ] = J ( θ 1 , θ 2 , . . . . . . θ i + ε , . . . ) − J ( θ 1 , θ 2 , . . . . . . θ i − ε , . . . ) 2 ε dθ_{approx}[i] =\frac{J(θ_1,θ_2,......θ_i+ε,...) - J(θ_1,θ_2,......θ_i-ε,...)}{2ε} dθapprox[i]=2εJ(θ1,θ2,......θi+ε,...)J(θ1,θ2,......θiε,...)

只对 θ i θ_i θi增加𝜀,其它项保持不变,因为我们使用的是双边误差,对另一边做同样的操作,只不过是减去𝜀,𝜃其它项全都保持不变。
在这里插入图片描述
从上节课中我们了解到这个值( d θ a p p r o x [ i ] dθ_{approx}[i] dθapprox[i])应该逼近𝑑𝜃[𝑖]=𝜕𝐽/𝜕𝜃𝑖,𝑑𝜃[𝑖]是代价函数的偏导数,然后你需要对𝑖的每个值都执行这个运算,最后得到两个向量,得到𝑑𝜃的逼近值 d θ a p p r o x dθ_{approx} dθapprox,它与𝑑𝜃具有相同维度,它们两个与𝜃具有相同维度,你要做的就是验证这些向量是否彼此接近。

具体来说,如何定义两个向量是否真的接近彼此?我一般做下列运算,计算这两个向量的距离,𝑑𝜃approx[𝑖] − 𝑑𝜃[𝑖]的欧几里得范数,注意这里(||𝑑𝜃approx − 𝑑𝜃||2)没有平方,它是误差平方之和,然后求平方根,得到欧式距离,然后用向量长度归一化,使用向量长度的欧几里得范数。分母只是用于预防这些向量太小或太大,分母使得这个方程式变成比率,我们实际执行这个方程式,𝜀可能为 1 0 − 7 10^{−7} 107,使用这个取值范围内的𝜀,如果你发现计算方程式得到的值为 1 0 − 7 10^{−7} 107或更小,这就很好,这就意味着导数逼近很有可能是正确的,它的值非常小。

在这里插入图片描述
如果它的值在 1 0 − 5 10^{−5} 105范围内,我就要小心了,也许这个值没问题,但我会再次检查这个向量的所有项,确保没有一项误差过大,可能这里有 bug。

如果左边这个方程式结果是 1 0 − 3 10^{−3} 103,我就会担心是否存在 bug,计算结果应该比 1 0 − 3 10^{−3} 103小很多,如果比 1 0 − 3 10^{−3} 103大很多,我就会很担心,担心是否存在 bug。这时应该仔细检查所有𝜃项,看是否有一个具体的𝑖值,使得𝑑𝜃approx[𝑖]与𝑑𝜃[𝑖]大不相同,并用它来追踪一些求导计算是否正确,经过一些调试,最终结果会是这种非常小的值( 1 0 − 7 10^{−7} 107),那么,你的实施可能是正确的。

在这里插入图片描述
在实施神经网络时,我经常需要执行 foreprop 和 backprop,然后我可能发现这个梯度检验有一个相对较大的值,我会怀疑存在 bug,然后开始调试,调试,调试,调试一段时间后,我得到一个很小的梯度检验值,现在我可以很自信的说,神经网络实施是正确的。

现在你已经了解了梯度检验的工作原理,它帮助我在神经网络实施中发现了很多 bug,希望它对你也有所帮助。

这篇关于吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.13-1.14的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968081

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个