STM32使用HAL库驱动USART详解及例程(持续更新......)

2024-05-07 18:32

本文主要是介绍STM32使用HAL库驱动USART详解及例程(持续更新......),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

      • HAL库串口驱动详解
        • STM32硬件串口收发数据过程
          • 串口发送流程--TXD
          • 串口接收流程--RXD
        • HAL库运行过程
        • 串口接收中断程序配置过程(HAL库):
      • 参考例程
        • STM32F0例程(STM32F030F4P6)
        • STM32F1例程(STM32F103C8T6)
        • STM32F7例程(STM32F767IGTx)


HAL库串口驱动详解

STM32硬件串口收发数据过程
串口发送流程–TXD

配置步骤:

  1. 编程USARTx_CR1的M位来定义字长。
  2. 编程USARTx_CR2的STOP位来定义停止位位数。
  3. 编程USARTx_BRR寄存器确定波特率。
  4. 使能USARTx_CR1的UE位使能USARTx。
  5. 如果进行多缓冲通信,配置USARTx_CR3的DMA使能(DMAT)。
  6. 使能USARTx_CR1的TE位使能发送器
/* 配置1~6步骤 */
HAL_UART_Init(UART_HandleTypeDef *huart) 

发送数据:

  1. 向发送数据寄存器TDR写入要发送的数据(对于M3,发送和接收共用DR寄存器)。
  2. 向TRD寄存器写入最后一个数据后,等待状态寄存器USARTx_SR(ISR)的TC位置1,传输完成。
/* 发送数据 */
HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)

串口接收流程–RXD

配置步骤:

  1. 编程USARTx_CR1的M位来定义字长。
  2. 编程USARTx_CR2的STOP位来定义停止位位数。
  3. 编程USARTx_BRR寄存器确定波特率。
  4. 使能USARTx_CR1的UE位使能USARTx。
  5. 如果进行多缓冲通信,配置USARTx_CR3的DMA使能(DMAT)。
  6. 使能USARTx_CR1的RE位为1使能接收器
  7. 如果要使能接收中断(接收到数据后产生中断),使能USARTx_CR1的RXNEIE位为1。
   /* 配置1~6步骤 */HAL_UART_Init(UART_HandleTypeDef *huart) /* 配置7步骤:开启接收中断,并且设置接收缓冲剂最大接收数据量 */HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)

当串口接收到数据时:

  1. USARTx_SR(ISR)的RXNE位置1。表明移位寄存器内容已经传输到RDR(DR)寄存器。已经接收到数据并且等待读取。
  2. 如果开启了接收数据中断(USARTx_CR1寄存器的RXNEIE位为1),则会产生中断。(程序上会执行中断服务函数)
  3. 如果开启了其他中断(帧错误等),相应标志位会置1。
  4. 读取USARTx_TDR(DR)寄存器的值,该操作会自动将RXNE位清零,等待下次接收后置位。
/* 步骤1 ,获取状态标志位通过标识符实现 */
__HAL_UART_GET_FLAG              //判断状态标志位
__HAL_UART_GET_IT_SOURCE   //判断中断标志位  
/* 步骤2~3,中断服务函数 */
void USARTx_IRQHandler(void) ;
/* 步骤4,读取接收数据 */
HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL库运行过程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

串口接收中断程序配置过程(HAL库):
  1. 初始化串口相关参数,使能串口:HAL_UART_Init();
  2. 串口相关IO口配置,复用配置:
    在HAL_UART_MspInit中调用HAL_GPIO_Init函数。
  3. 串口接收中断优先级配置和使能:
    HAL_NVIC_EnableIRQ();
    HAL_NVIC_SetPriority();
  4. 使能串口接收中断:HAL_UART_Receive_IT();
  5. 编写中断服务函数:USARTx_IRQHandler

参考例程

STM32F0例程(STM32F030F4P6)
STM32F1例程(STM32F103C8T6)
STM32F7例程(STM32F767IGTx)
uint8_t rData[1];
uint8_t tData[] = "this is test data.";UART_HandleTypeDef huart1;int main(void)
{HAL_Init();SystemClock_Config();MX_USART1_UART_Init();while (1){HAL_UART_Transmit(&huart1, tData, tData(test), 1000);HAL_GPIO_TogglePin(GPIOB,GPIO_PIN_1);HAL_Delay(500);}
}/* USART1 init function */
void MX_USART1_UART_Init(void)
{huart1.Instance = USART1;huart1.Init.BaudRate = 9600;huart1.Init.WordLength = UART_WORDLENGTH_8B;huart1.Init.StopBits = UART_STOPBITS_1;huart1.Init.Parity = UART_PARITY_NONE;huart1.Init.Mode = UART_MODE_TX_RX;huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart1.Init.OverSampling = UART_OVERSAMPLING_16;huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;if (HAL_UART_Init(&huart1) != HAL_OK){_Error_Handler(__FILE__, __LINE__);}
}
/* HAL_UART_Init(&huart1)调用此函数进行串口硬件底层配置 */
void HAL_UART_MspInit(UART_HandleTypeDef* huart)
{GPIO_InitTypeDef GPIO_InitStruct;if(huart->Instance==USART1){/* USER CODE BEGIN USART1_MspInit 0 *//* USER CODE END USART1_MspInit 0 *//* Peripheral clock enable */__HAL_RCC_USART1_CLK_ENABLE();​    /**USART1 GPIO Configuration    PA9     ------> USART1_TXPA10     ------> USART1_RX */GPIO_InitStruct.Pin = GPIO_PIN_9|GPIO_PIN_10;GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;GPIO_InitStruct.Alternate = GPIO_AF7_USART1;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);​    /* USART1 interrupt Init */HAL_NVIC_SetPriority(USART1_IRQn, 0, 0);HAL_NVIC_EnableIRQ(USART1_IRQn);/* USER CODE BEGIN USART1_MspInit 1 *//* 开启接收中断,并初始化串口接收指针 */HAL_UART_Receive_IT(&huart1, rData, 1);/* USER CODE END USART1_MspInit 1 */}
}
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{/* 接收一个字节数据直接发出去 */HAL_UART_Transmit(&huart1, rData, 1, 1000);	/* 每次需要重新初始化接收结构体指针 */HAL_UART_Receive_IT(&huart1, rData, 1);
}

这篇关于STM32使用HAL库驱动USART详解及例程(持续更新......)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968057

相关文章

Linux内核驱动学习(五)KThread学习总结

文章目录 简介例程运行结果参考 简介 使用内核线程需要包含头文件#include <linux/kthread.h>,下面整理了一下常用的api接口,如下表格所示; 函数功能struct task_struct * kthread_create(threadfn, data, namefmt, arg...)创建一个线程struct task_struct * kthread

repo使用总结—从入门到入门

文章目录 1 what's repo2 官方文档Repo 命令参考资料help 帮助init 初始化sync 同步所有项目文件upload 提交更改diffdownloadforallprunestart 创建本地分支Example:创建三个分支test-1,test-2,test-3 statusbranchesabandonExample:删除本地分支test-3 后续在使用中遇到问题

Linux内核驱动学习(四)Platform设备驱动模型

Linux platform设备驱动模型 文章目录 Linux platform设备驱动模型前言框架设备与驱动的分离设备(device)驱动(driver)匹配(match) 参考 前言 为什么要往平台设备驱动迁移?这里需要引入设备,总线,驱动这三个概念。上一篇字符型设备驱动的实现实际将设备和驱动集成到同一个文件中实现,如果这里有硬件A的驱动,硬件B的驱动,硬件C的驱动,然后

Linux内核驱动学习(三)字符型设备驱动之初体验

Linux字符型设备驱动之初体验 文章目录 Linux字符型设备驱动之初体验前言框架字符型设备程序实现cdevkobjownerfile_operationsdev_t 设备注册过程申请设备号注册设备register_device 如何构建模块编译内核编译MakefileKconfig 总结参考 前言 驱动总共分为字符型设备驱动,块设备驱动,网络设备驱动。对于字符型设备驱

Linux内核驱动学习(二)添加自定义菜单到内核源码menuconfig

文章目录 目标drivers/Kconfigdemo下的Kconfig 和 MakefileKconfigMakefiledemo_gpio.c 目标 Kernel:Linux 4.4 我编写一个简单的hello worldLinux 内核模块后,已经可以通过insmod动态加载到系统内核中,并通过rmmod卸载模块。但是出于学习的目的,我想把这个内核添加到Linux源码中

STM32 标准库3.5修改默认外部8M晶振为16M晶振

ST官方标准库V3.5默认的外部晶振频率为8M,实际使用中外部晶振需要修改为16M; 经过实验,修改有效,具体的patch如下: 修改 HSE_VALUE 值 diff --git "a/Libraries/CMSIS/CM3/DeviceSupport/ST/STM32F10x/stm32f10x.h" "b/Libraries/CMSIS/CM3/DeviceSupport/ST/STM

STM32 IAP 升级官方资料汇总

整理了一下SMT32标准外设库进行IAP升级的官方demo; 标准库版本 STM32F10xxx in-application programming using the USART (AN2557) STM32F2xx in-application programming using the USART (AN3374) STM32F4 in-application programming

STM32 TIM 多通道互补PWM波形输出配置快速入门

platform:stm32f10xxx lib:STM32F10x_StdPeriph_Lib_V3.5.0 前言 在做三相逆变的时候,需要软件生成SVPWM波形,具体的算法需要产生三对互补的PWM,这样可以驱动六个开关元件,stm32f103中的TIM1高级定时器支持产生三路互补PWM波形,下面进一步学习。 PWM产生的原理 TIM1的OC模块,可以产生PWM波形,具体步骤; 寄存器

STM32 TIM1高级定时器配置快速入门

layout: post tags: [STM32] comments: true 文章目录 layout: post tags: [STM32] comments: true重点内容时基单元计数模式 重点内容 不管是基于标准库还是直接操作寄存器,因为TIM定时器的功能比较多,这里单纯只从定时器的角度进行学习,这里需要重点关注的地方应该有以下几点: 定时器时钟频率的计算

STM32 ADC多通道规则采样和注入采样

layout: post tags: [STM32] comments: true 文章目录 layout: post tags: [STM32] comments: true什么是ADC?STM32 ADC的特性采样模式采样时间代码实现 什么是ADC? Analog to Digital Converter,将模拟信号转换成数字的模数转换器,后面可能还会接触到DAC,恰