多目标灰狼算法(MOGWO):原理讲解与代码实现 Matlab代码免费获取

本文主要是介绍多目标灰狼算法(MOGWO):原理讲解与代码实现 Matlab代码免费获取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~ 

目录

原理简介

一、Pareto最优概念

二、单目标GWO

三、多目标GWO优化机制

四、整体算法流程

代码实现


        今天为大家带来一期多目标灰狼算法(MOGWO)代码,该算法由 Seyedali Mirjalili 等人于 2016 年发表在SCI一区顶刊《Expert Systems With Applications》上!

        目前,MOGWO已经被广泛应用于如能源系统优化、物流路径优化、参数调优等不同场景,相比于单目标算法,多目标算法考虑的内容更多,更容易受到审稿人的青睐。

        本期代码免费赠送,需要代码的小伙伴可直接拉到最后!

原理简介

一、Pareto最优概念

        多目标灰狼优化算法 (Multi-objective Grey Wolf Optimizer, MOGWO)是灰狼优化算法(GWO)的多目标版本,旨在解决多准则下无法比较多目标空间中解的优劣问题,因此引入了Pareto最优解集的概念。

        以最小化为例,解A对解B在某个目标函数上存在f(A)<f(B),则称解A支配解B。在解集内,找不到其他解在所有目标函数上都优于解A的解,则解A为Pareto最优解,这一类解组成的集合为Pareto最优解集,而Pareto前沿则由Pareto最优解的目标函数值组成。

二、单目标GWO

        为了更好地了解MOGWO,首先介绍一下单目标GWO原理。单目标GWO通过模仿灰狼捕猎行为进行寻优,其数学模型如下:

        式中:t为当前迭代次数;Xα、Xβ和Xδ为阿尔法狼、贝塔狼和德尔塔狼的位置向量;X为灰狼的位置向量;A和C是系数向量。其计算如下:

        式中:a在迭代过程中线性地从2减少到0;r1和r2则是[0,1]的随机向量。

三、多目标GWO优化机制

        不同于传统的单目标算法,多目标算法能够通过寻找帕累托解平衡多个相互竞争的目标。而MOGWO相比于其他多目标算法,则有两个较为明显的改进,一是引入存档机制,二是改进头狼选择方式

        第一,存档机制。外部存档Archive保存到目前为止获得Pareto最优解,在迭代中新得到的非支配解与存档中的常驻解采用以下处理方式:

(1)新个体被至少以一个存档中的常驻解支配时,新个体不被允许进入存档。

(2)新个体支配存档中的一个或多个解时,新个体进入存档,存档内被支配的解则被省略掉。

(3)如果新个体与存档内的解都不相互支配,则应将新个体加入存档。

(4)当存档已满时,运行网格机制重新安排目标空间的分割,去掉最拥挤的部分的一个解,将新解插入到最不拥挤的位置,以提高Pareto前沿的多样性。

        第二,改进头狼选择方式。为选择出合适的三匹头狼(α狼、β狼、δ狼),通过轮盘赌法在Archive中最不拥挤的部分按照如下概率选择头狼:

        式中:c为大于1的常数;Ni为该第i组中Pareto最优解个数。

四、整体算法流程

        MOGWO的具体流程如下:

        (1)设置算法的种群数量、最大迭代次数,设置外部存档Archive大小、轮盘赌法参数等。

        (2)计算种群个体的目标参数值,确定支配关系,将非支配解存入Archive中。

        (3)根据外部存档中的拥挤度,依据轮盘赌法确定头狼(α狼、β狼、δ狼)。

        (4)利用得到的头狼更新种群个体位置并计算目标函数值。

        (5)比较新的种群个体与存档中个体的支配关系,确定新的非支配解更新存档。

        (6)对步骤(3)、步骤(4)和步骤(5)迭代运行,达到迭代上限停止,输出Archive解。

代码实现

        MOGWO核心代码如下:

clear
clc
drawing_flag = 1;
nVar=5;%%  测试函数
fobj=@(x) ZDT3(x);%%  MOGWO算法参数
lb=zeros(1,5);
ub=ones(1,5);
VarSize=[1 nVar];
GreyWolves_num=100;    % 种群数量
MaxIt=50;              % 迭代次数
Archive_size=100;      % 存档数量%%  网格机制的参数
alpha=0.1;             % Grid Inflation Parameter
nGrid=10;              % Number of Grids per each Dimension
beta=4;                % Leader Selection Pressure Parameter
gamma=2;               % Extra (to be deleted) Repository Member Selection Pressure%%  种群初始化
GreyWolves=CreateEmptyParticle(GreyWolves_num);
for i=1:GreyWolves_numGreyWolves(i).Velocity=0;GreyWolves(i).Position=zeros(1,nVar);for j=1:nVarGreyWolves(i).Position(1,j)=unifrnd(lb(j),ub(j),1);endGreyWolves(i).Cost=fobj(GreyWolves(i).Position')';GreyWolves(i).Best.Position=GreyWolves(i).Position;GreyWolves(i).Best.Cost=GreyWolves(i).Cost;
end%%  确定支配关系
GreyWolves=DetermineDomination(GreyWolves);%%  非支配解存档
Archive=GetNonDominatedParticles(GreyWolves);%%  网格机制
Archive_costs=GetCosts(Archive);
G=CreateHypercubes(Archive_costs,nGrid,alpha);for i=1:numel(Archive)[Archive(i).GridIndex Archive(i).GridSubIndex]=GetGridIndex(Archive(i),G);
end%%  主程序迭代
for it=1:MaxIta=2-it*((2)/MaxIt);for i=1:GreyWolves_numclear rep2clear rep3% Choose the alpha, beta, and delta grey wolvesDelta=SelectLeader(Archive,beta);Beta=SelectLeader(Archive,beta);Alpha=SelectLeader(Archive,beta);% If there are less than three solutions in the least crowded% hypercube, the second least crowded hypercube is also found% to choose other leaders from.if size(Archive,1)>1counter=0;for newi=1:size(Archive,1)if sum(Delta.Position~=Archive(newi).Position)~=0counter=counter+1;rep2(counter,1)=Archive(newi);endendBeta=SelectLeader(rep2,beta);end% This scenario is the same if the second least crowded hypercube% has one solution, so the delta leader should be chosen from the% third least crowded hypercube.if size(Archive,1)>2counter=0;for newi=1:size(rep2,1)if sum(Beta.Position~=rep2(newi).Position)~=0counter=counter+1;rep3(counter,1)=rep2(newi);endendAlpha=SelectLeader(rep3,beta);end% Eq.(3.4) in the paperc=2.*rand(1, nVar);% Eq.(3.1) in the paperD=abs(c.*Delta.Position-GreyWolves(i).Position);% Eq.(3.3) in the paperA=2.*a.*rand(1, nVar)-a;% Eq.(3.8) in the paperX1=Delta.Position-A.*abs(D);% Eq.(3.4) in the paperc=2.*rand(1, nVar);% Eq.(3.1) in the paperD=abs(c.*Beta.Position-GreyWolves(i).Position);% Eq.(3.3) in the paperA=2.*a.*rand()-a;% Eq.(3.9) in the paperX2=Beta.Position-A.*abs(D);% Eq.(3.4) in the paperc=2.*rand(1, nVar);% Eq.(3.1) in the paperD=abs(c.*Alpha.Position-GreyWolves(i).Position);% Eq.(3.3) in the paperA=2.*a.*rand()-a;% Eq.(3.10) in the paperX3=Alpha.Position-A.*abs(D);% Eq.(3.11) in the paperGreyWolves(i).Position=(X1+X2+X3)./3;% Boundary checkingGreyWolves(i).Position=min(max(GreyWolves(i).Position,lb),ub);GreyWolves(i).Cost=fobj(GreyWolves(i).Position')';endGreyWolves=DetermineDomination(GreyWolves);non_dominated_wolves=GetNonDominatedParticles(GreyWolves);Archive=[Archivenon_dominated_wolves];Archive=DetermineDomination(Archive);Archive=GetNonDominatedParticles(Archive);for i=1:numel(Archive)[Archive(i).GridIndex Archive(i).GridSubIndex]=GetGridIndex(Archive(i),G);endif numel(Archive)>Archive_sizeEXTRA=numel(Archive)-Archive_size;Archive=DeleteFromRep(Archive,EXTRA,gamma);Archive_costs=GetCosts(Archive);G=CreateHypercubes(Archive_costs,nGrid,alpha);enddisp(['In iteration ' num2str(it) ': Number of solutions in the archive = ' num2str(numel(Archive))]);save results% Resultscosts=GetCosts(GreyWolves);Archive_costs=GetCosts(Archive);if drawing_flag==1hold offplot(costs(1,:),costs(2,:),'k.');hold onplot(Archive_costs(1,:),Archive_costs(2,:),'r*');legend('灰狼种群','非支配解');set(gcf,'color','w')drawnowendend

        代码里提供了四种多目标函数,分别为ZDT1、ZDT2、ZDT3、ZDT4,大家可以自行切换,以ZDT3为例:

        这是迭代过程图,图中可以很清晰的显示灰狼种群与各非支配解,在迭代完成后选择需要的非支配解即可。

        其中有部分函数封装为了子函数,文章中无法全部放下。因此,需要完整代码的小伙伴只需点击下方小卡片,后台回复关键词,不区分大小写:

MOGWO

        若有其他更多代码需求或免费代码,可查看链接:更多代码链接

这篇关于多目标灰狼算法(MOGWO):原理讲解与代码实现 Matlab代码免费获取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968035

相关文章

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

如何利用Java获取当天的开始和结束时间

《如何利用Java获取当天的开始和结束时间》:本文主要介绍如何使用Java8的LocalDate和LocalDateTime类获取指定日期的开始和结束时间,展示了如何通过这些类进行日期和时间的处... 目录前言1. Java日期时间API概述2. 获取当天的开始和结束时间代码解析运行结果3. 总结前言在J

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J